高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相位掩模板的常规光纤制备弱反射光栅

顾宏灿 姚高飞 黄俊斌 丁朋

引用本文:
Citation:

基于相位掩模板的常规光纤制备弱反射光栅

    作者简介: 顾宏灿(1980-),男,博士,副教授,主要研究方向为光纤传感技术.
    通讯作者: 黄俊斌, tsyj98@163.com
  • 基金项目:

    国家自然科学基金资助项目 11774432

  • 中图分类号: TN253

Fabrication of weak fiber Bragg grating with conventional fiber based on phase mask

    Corresponding author: HUANG Junbin, tsyj98@163.com ;
  • CLC number: TN253

  • 摘要: 为了探索采用常规单模光纤制备弱反射光纤光栅的可行性,以降低材料成本和传输损耗,基于相位掩模板法,在常规单模光纤上刻制弱反射光纤布喇格光栅(WFBG),并进行了实验验证。建立相位掩模板刻栅系统光场统一方程,分析光场分布对光纤布喇格光栅(FBG)中心波长和反射率的影响;采用传输矩阵法分析相位掩模板长度、平均折射率变化对FBG反射率和3dB带宽的影响,为WFBG刻制提供理论依据。采用248nm紫外准分子激光器在常规单模光纤上刻制WFBG,分析相位掩模板长度、曝光能量、曝光频率,曝光次数对WFBG中心波长、反射率和3dB带宽的影响,制备出反射率和3dB带宽分别约为0.0016,0.10nm和0.00006,0.34nm两种窄宽的WFBG。结果表明,基于相位掩模板法由紫外准分子激光对常规单模光纤多脉冲曝光,能够稳定刻制WFBG。该研究对WFBG制备的材料选型提供了参考。
  • Figure 1.  UV excimer laser emits on a fiber through a phase mask

    Figure 2.  Reflection spectra of FBGs with different grating lengths

    a—with different grating lengths b—with different average refractive index changes

    Figure 3.  WFBG fabrication and real time display system

    Figure 4.  Spectra of reference FBG and WFBG

    Figure 5.  Spectra of 7 WFBGs with different exposure times

    a—spectra b—relationship between exposure times and reflectivities

    Figure 6.  Spectra of 7 WFBGs with narrow bandwidth under exposure of 400 times

    Figure 7.  WFBG with wide bandwidth fabrication process display

    Figure 8.  6 WFBGs with wide bandwidth under exposure of 5000 times

    Table 1.  Related parameters of 7 WFBGs under exposure of 400 times

    central wavelength/nm reflectivity 3dB bandwidth/nm
    1 1532.034 0.0019 0.08
    2 1532.042 0.0007 0.12
    3 1532.023 0.0018 0.09
    4 1532.046 0.0017 0.09
    5 1531.973 0.0013 0.11
    6 1532.041 0.0019 0.09
    7 1532.029 0.0021 0.09
    average value 1532.027 0.0016 0.096
    root mean square 0.023 0.0004 0.013
    下载: 导出CSV

    Table 2.  Related parameters of 6 WFBGs under exposure of 5000 times

    central wavelength/nm reflectivity 3dB bandwidth/nm
    1 1538.864 0.000079 0.332
    2 1538.880 0.000058 0.316
    3 1538.892 0.000066 0.386
    4 1538.92 0.000052 0.344
    5 1538.772 0.000048 0.327
    6 1538.792 0.000063 0.355
    average value 1538.8533 0.000061 0.3433
    root mean square 0.0534 0.00001 0.0227
    下载: 导出CSV
  • [1]

    HILL K O, MELTZ G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 1997, 8(15): 1263-1276.
    [2]

    MARTINEZ A, DUBOV M, KHRUSHCHEV I, et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 2004, 40(19): 1170-1172. doi: 10.1049/el:20046050
    [3]

    LIAO Y B, YUAN L B, TIAN Q. The 40 years of optical fiber sensors in China[J]. Acta Optica Sinica, 2018, 38(3): 0328001(in Chinese). doi: 10.3788/AOS201838.0328001
    [4]

    CAMPANELLA C E, CUCCOVILLO A, CAMPANELLA C, et al. Fibre Bragg grating based strain sensors: Review of technology and applications[J]. Sensors, 2018, 18(9): 3115. doi: 10.3390/s18093115
    [5]

    DING P, WU J, KANG D, et al. Detection of acoustic wave direction using weak-reflection fiber Bragg gratings [J]. Chinese Journal of Lasers, 2020, 47(5): 0506002(in Chinese). doi: 10.3788/CJL202047.0506002
    [6]

    GAN W, LI S, LI Z, et al. Identification of ground intrusion in underground structures based on distributed structural vibration detected by ultra-weak FBG sensing technology[J]. Sensors, 2019, 19(9): 2160. doi: 10.3390/s19092160
    [7]

    LAVROV V S, PLOTNIKOV M Y, AKSARIN S M, et al. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings[J]. Optical Fiber Technology, 2017, 34: 47-51. doi: 10.1016/j.yofte.2017.01.003
    [8]

    ASKINS C G, TSAI T E, WILLIAMS G M, et al. Fiber Bragg reflectors prepared by a single excimer pulse[J]. Optcis Letters, 1992, 17(11): 833-835. doi: 10.1364/OL.17.000833
    [9]

    SUN Q Zh, LIU D M, WO J H, et al. Fabrication device and methd of a distributed sensing fiber: CN'102053303B[P]. 2012-06-27(in Chinese).
    [10]

    WANG Y M, GONG J M, DONG B, et al. A large serial time-division multiplexed fiber Bragg grating sensor network[J]. Journal of Lightwave Technology, 2012, 30(17): 2751-2756. doi: 10.1109/JLT.2012.2205897
    [11]

    CHEN Z, HEFFERMAN G, WEI T. Terahertz-range weak reflection fiber optic structures for sensing applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2): 5600806.
    [12]

    LIAO Ch R, HE J, WANG Y P. Study on high temperature sensors based on fiber Bragg gratings fabricated by femtosecond laser[J]. Acta Optica Sinica, 2018, 38(3): 328009(in Chinese). doi: 10.3788/AOS201838.0328009
    [13]

    YU H, HE W, GUO H Y, et al. Study of fiber Bragg grating fabrication online on draw tower via phase mask method and equipment manufacturing[J]. Chinese Journal of Lasers, 2013, 40(5): 0505001(in Chinese). doi: 10.3788/CJL201340.0505001
    [14]

    YANG M, BAI W, GUO H, et al. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings[J]. Photonic Sensors, 2016, 6(1): 26-41. doi: 10.1007/s13320-015-0298-0
    [15]

    GUO H, TANG J, LI X, et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 2013, 11(3): 0602.
    [16]

    GRIBAEV A I, PAVLISHIN I V, STAM A M, et al. Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer[J]. Optical and Quantum Electronics, 2016, 48(12): 540. doi: 10.1007/s11082-016-0816-3
    [17]

    ELSMANN T, BECKER M, OLUSOJI O, et al. Two-step-model of photosensitivity in cerium-doped fibers[J]. Optical Materials Express, 2019, 9(4): 1654-1666. doi: 10.1364/OME.9.001654
    [18]

    TARNOWSKI K, URBANCZYK W. Origin of Bragg reflection peaks splitting in gratings fabricated using a multiple order phase mask[J]. Optics Express 2013, 21(19): 21800-21810. doi: 10.1364/OE.21.021800
    [19]

    WANG D, LI X, PI H Y, et al. Interference field behind phase mask and its influence on the loss characteristic in fiber Bragg gratings[J]. Acta Optica Sinica, 2018, 38(8): 806002(in Chinese). doi: 10.3788/AOS201838.0806002
    [20]

    YAO G F, HUANG J B, LIU W, et al. Influence of light source expansion on fiber grating fabrication [J]. Journal of Naval University of Engineering, 2020, 32(5): 65-70(in Chinese).
    [21]

    ERDOGAN T. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294. doi: 10.1109/50.618322
  • [1] 曹涧秋陆启生 . 单模光纤中高阶色散对超高斯光脉冲传播的影响. 激光技术, 2006, 30(2): 209-211,220.
    [2] 吴建伟夏光琼吴正茂 . 超高斯光脉冲在单模光纤中的传输特性. 激光技术, 2003, 27(4): 342-344,348.
    [3] 温芳门艳彬孟义昌张书敏 . 基于光子晶体光纤的高斯脉冲光谱压缩数值研究. 激光技术, 2015, 39(1): 65-70. doi: 10.7510/jgjs.issn.1001-3806.2015.01.013
    [4] 黄艳 . 高斯-谢尔脉冲在单模光纤中的传输特性研究. 激光技术, 2019, 43(6): 841-845. doi: 10.7510/jgjs.issn.1001-3806.2019.06.020
    [5] 冯其波梁晋文 . 单模光纤激光准直仪的研制. 激光技术, 1994, 18(6): 357-360.
    [6] 王润轩 . 初始啁啾补偿光纤色散效应的数值研究. 激光技术, 2005, 29(1): 109-112.
    [7] 陈建军李林福 . 光强控制非线性布喇格光纤光栅慢光特性研究. 激光技术, 2015, 39(2): 224-227. doi: 10.7510/jgjs.issn.1001-3806.2015.02.017
    [8] 庞亮雨张巧芬高梓皓陈楚浜吴铭扬 . 基于Mach-Zehnder干涉仪的自相似激光器压缩系统设计. 激光技术, 2023, 47(6): 803-810. doi: 10.7510/jgjs.issn.1001-3806.2023.06.011
    [9] 魏佳菊梁一平戴特力 . 线性啁啾光纤布喇格光栅反射谱的数值模拟. 激光技术, 2012, 36(5): 607-611. doi: 10.3969/j.issn.1001-3806.2012.05.008
    [10] 李远延凤平刘硕白卓娅 . 大模场掺铥光纤增益特性研究. 激光技术, 2018, 42(5): 638-645. doi: 10.7510/jgjs.issn.1001-3806.2018.05.011
    [11] 徐庆超刘冀鹏陈建国周鼎富杨泽后 . 解析求解双包层光纤激光器中受激喇曼光的阈值. 激光技术, 2008, 32(1): 1-3,7.
    [12] 张祖兴叶志清桑明煌聂义友 . 基于色散位移光纤中交叉相位调制的波长转换. 激光技术, 2008, 32(6): 587-589.
    [13] 吕欢祝余明芯钟文博张克非 . 大模场低损耗光子晶体光纤的研究与设计. 激光技术, 2021, 45(2): 196-201. doi: 10.7510/jgjs.issn.1001-3806.2021.02.012
    [14] 李雪韩志刚尹路孟令强朱日宏 . 大模场双包层光纤熔接的功率对准技术研究. 激光技术, 2017, 41(3): 337-341. doi: 10.7510/jgjs.issn.1001-3806.2017.03.007
    [15] 陆丹葛廷武伍剑徐坤林金桐 . D形双包层大模场光纤激光偏振特性研究. 激光技术, 2009, 33(5): 509-511. doi: 10.3969/j.issn.1001-3806.2009.05.013
    [16] 黄小东张小民李明中王建军张锐赵圣之车雅良许党朋 . 高功率掺Yb3+大模场光纤放大器实验研究. 激光技术, 2009, 33(4): 400-402. doi: 10.3969/j.issn.1001-3806.2009.04.019
    [17] 吉正继武向农殷业肖龙 . 基于高双折射光纤环镜的可调谐光滤波器. 激光技术, 2014, 38(1): 54-57. doi: 10.7510/jgjs.issn.1001-3806.2014.01.012
    [18] 李东张晓晖黄俊斌 . 光纤干涉仪输入光偏振态反馈控制理论分析. 激光技术, 2006, 30(2): 126-129.
    [19] 李杰雄李波朱广志岳建堡王智用 . 高功率光纤激光器的残留包层光滤除研究. 激光技术, 2017, 41(6): 798-802. doi: 10.7510/jgjs.issn.1001-3806.2017.06.006
    [20] 周小红王黎高晓蓉王泽勇罗斌 . 超短光脉冲通过分布式光纤放大器的传输特性. 激光技术, 2011, 35(2): 278-281. doi: 10.3969/j.issn.1001-3806.2011.02.037
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  6144
  • HTML全文浏览量:  3095
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 录用日期:  2021-06-11
  • 刊出日期:  2022-03-25

基于相位掩模板的常规光纤制备弱反射光栅

    通讯作者: 黄俊斌, tsyj98@163.com
    作者简介: 顾宏灿(1980-),男,博士,副教授,主要研究方向为光纤传感技术
  • 海军工程大学 兵器工程学院, 武汉 430033
基金项目:  国家自然科学基金资助项目 11774432

摘要: 为了探索采用常规单模光纤制备弱反射光纤光栅的可行性,以降低材料成本和传输损耗,基于相位掩模板法,在常规单模光纤上刻制弱反射光纤布喇格光栅(WFBG),并进行了实验验证。建立相位掩模板刻栅系统光场统一方程,分析光场分布对光纤布喇格光栅(FBG)中心波长和反射率的影响;采用传输矩阵法分析相位掩模板长度、平均折射率变化对FBG反射率和3dB带宽的影响,为WFBG刻制提供理论依据。采用248nm紫外准分子激光器在常规单模光纤上刻制WFBG,分析相位掩模板长度、曝光能量、曝光频率,曝光次数对WFBG中心波长、反射率和3dB带宽的影响,制备出反射率和3dB带宽分别约为0.0016,0.10nm和0.00006,0.34nm两种窄宽的WFBG。结果表明,基于相位掩模板法由紫外准分子激光对常规单模光纤多脉冲曝光,能够稳定刻制WFBG。该研究对WFBG制备的材料选型提供了参考。

English Abstract

    • 光纤布喇格光栅(fiber Bragg grating,FBG)是由紫外激光曝光光敏光纤[1]或飞秒激光曝光普通光纤[2],使纤芯折射率沿轴向永久周期变化制备而成,当前已经成功应用于各个传感领域[3-4]。弱反射光纤布喇格光栅(weak fiber Bragg grating,WFBG)是反射率较弱的FBG,由于较低的反射率,与普通FBG相比,其复用能力得到极大增强,适宜构建大规模、远距离、小体积的准分布式WFBG传感阵列,在声波探测等传感领域具有重要应用前景[5-7]。WFBG首次由Talbot干涉法激光单脉冲曝光掺锗光纤制备而成[8],后续出现的紫外激光曝光相位掩模板法[9-10]、飞秒激光直写技术[11-12]等推动了WFBG制备方法的多样化。在线拉丝塔相位掩模板法[13-15]和在线拉丝塔Talbot干涉法[16],同时进行制备光纤、WFBG和涂覆操作,大大增强了WFBG线阵的机械强度,已经成功制备出超大规模WFBG阵列,这两种方法制备WFBG均是基于光敏光纤的光致折射率调制效应,所采用的光纤是Ge/B共掺、掺Ge、掺Ce[17]等光敏光纤,存在材料成本高,传输损耗大的问题。

      本文中提出基于相位掩模板法,直接在常规单模光纤(conventional single-mode fiber,CSMF)上刻写WFBG,目的在于探索取代光敏掺杂光纤的可行性,以降低材料成本和传输损耗。CSMF为G652D光纤,纤芯含有少量的锗元素,能够感应紫外光,但光敏性弱,需要高效率的紫外曝光。在参考文献[18]和参考文献[19]的基础上综合分析紫外准分子激光平行度,及其与相位掩模板和光纤的位置关系对FBG中心波长、相位掩模板后衍射光强的影响,以调节刻栅系统使照射到CSMF上的干涉光强最大。采用传输矩阵法分析相位掩模板长度、折射率调制深度对FBG反射率和3dB带宽的影响,指出制备窄带宽WFBG选用较长的相位掩模板,宽带宽WFBG则选用较短的相位掩模板。最后,采用248nm紫外准分子激光器在CSMF上刻制WFBG,分析相位掩模板长度、曝光能量、曝光频率,曝光次数对WFBG中心波长、反射率和3dB带宽的影响,制备出反射率及3dB带宽分别约为0.0016,0.10nm和0.00006,0.34nm的两种窄宽WFBG。实验结果表明,选用合适的紫外准分子激光参量和相位掩模板长度可以在CSMF上稳定地刻制窄宽两种WFBG。

    • 图 1为紫外准分子激光经过相位掩模板照射在待刻光纤上。沿掩模板的平行和法线方向分别建立x轴和z轴,沿光纤的平行和法线方向分别建立s轴和t轴。激光的发散(会聚)角为Δθ;激光束整体与掩模板的夹角为θ0; 光纤与掩模板的夹角为φ0; 激光的波矢为KUV,掩模板的光栅波矢为G,掩模板后第m级次衍射光波矢为Km

      Figure 1.  UV excimer laser emits on a fiber through a phase mask

      理想情况下,激光束平行,并与掩模板垂直,此时:

      $ {\mathit{\boldsymbol{K}}_{_{{\rm{UV}}}}}{\rm{ = (}}{\mathit{K}_{_{{\rm{UV}}}}}{\rm{, 0, 0) = }}\left( {\frac{{{\rm{2 \mathit{ π} }}}}{\mathit{\lambda }}{\rm{, 0, 0}}} \right) $

      (1)

      $ \mathit{\boldsymbol{G}}{\rm{ = (}}\mathit{G}{\rm{, 0, 0) = }}\left( {\frac{{{\rm{2 \mathit{ π} }}}}{\mathit{\Lambda }}{\rm{, 0, 0 }}} \right) $

      (2)

      $ \left| {{\mathit{\boldsymbol{K}}_\mathit{m}}} \right|{\rm{ = }}\left| {{\mathit{\boldsymbol{K}}_{_{{\rm{UV}}}}}} \right| $

      (3)

      $ \left( {{\mathit{\boldsymbol{K}}_\mathit{m}} - {\mathit{\boldsymbol{K}}_{_{{\rm{UV}}}}} - \mathit{m}\mathit{\boldsymbol{G}}} \right) \times \mathit{z}{\rm{ = 0}} $

      (4)

      式中,λ为紫外准分子激光的波长;Λ为占空比是0.5的相位掩模板周期。由(1)式~(4)式可得:

      $ {\mathit{\boldsymbol{K}}_\mathit{m}}{\rm{ = [}}\mathit{mG}{\rm{,0,}}\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - (}}\mathit{mG}{{\rm{)}}^{\rm{2}}}} {\rm{]}} $

      (5)

      实际情况中,紫外准分子激光存在发散或会聚情况,与掩模板并不垂直。由此,(1)式中KUV修正为:

      $ {\mathit{\boldsymbol{K}}_{{\rm{UV}}}}{\rm{ = [}}{\mathit{K}_{{\rm{UV}}}}{\rm{sin}}\left( {{\mathit{\theta }_{\rm{0}}}{\rm{ + }}\mathit{\theta }} \right){\rm{, }}{\mathit{K}_{{\rm{UV}}}}{\rm{cos(}}{\mathit{\theta }_{\rm{0}}}{\rm{ + }}\mathit{\theta }{\rm{)]}} $

      (6)

      式中,θ为区间[-Δθ/2, Δθ/2]内的任意值。从而,(5)式中Km修正为:

      $ \begin{array}{c} {\mathit{\boldsymbol{K}}_\mathit{m}} \approx \left[ {\mathit{mG}{\rm{ - }}{\mathit{K}_{{\rm{UV}}}}{\rm{sin(}}{\mathit{\theta }_{\rm{0}}}{\rm{ + }}\mathit{\theta }{\rm{),}}\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - (}}\mathit{mG}{{\rm{)}}^{\rm{2}}}} {\rm{ + }}} \right.\\ \left. {\frac{{\mathit{mG}{\mathit{K}_{{\rm{UV}}}}{\rm{sin(}}{\mathit{\theta }_{\rm{0}}}{\rm{ + }}\mathit{\theta }{\rm{)}}}}{{\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - (}}\mathit{mG}{{\rm{)}}^{\rm{2}}}} }}} \right] \end{array} $

      (7)

      光纤与掩模板并不平行,m阶衍射光Km映射到光纤上,即在s-t坐标轴中,

      $ \begin{array}{c} {\mathit{\boldsymbol{K}}_{\mathit{m,s,t}}}{\rm{ = }}\\ \left\{ {{\rm{[}}\mathit{mG}{\rm{ - }}{\mathit{K}_{{\rm{UV}}}}{\rm{sin(}}{\mathit{\theta }_{\rm{0}}}{\rm{ + }}\mathit{\theta }{\rm{)]cos}}{\mathit{\varphi }_{\rm{0}}}{\rm{ - }}} \right.\\ \left[ {\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - (}}\mathit{mG}{{\rm{)}}^{\rm{2}}}} {\rm{ + }}\frac{{\mathit{mG}{\mathit{K}_{{\rm{UV}}}}{\rm{sin(}}{\mathit{\theta }_{\rm{0}}}{\rm{ + }}\mathit{\theta }{\rm{)}}}}{{\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - (}}\mathit{mG}{{\rm{)}}^{\rm{2}}}} }}} \right]{\rm{sin}}{\mathit{\varphi }_{\rm{0}}}{\rm{,}}\\ {\rm{[}}\mathit{mG}{\rm{ - }}{\mathit{K}_{{\rm{UV}}}}{\rm{sin(}}{\mathit{\theta }_{\rm{0}}}{\rm{ + }}\mathit{\theta }{\rm{)]sin}}{\mathit{\varphi }_{\rm{0}}}{\rm{ + }}\\ \left. {\left[ {\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - (}}\mathit{mG}{{\rm{)}}^{\rm{2}}}} {\rm{ + }}\frac{{\mathit{mG}{\mathit{K}_{{\rm{UV}}}}{\rm{sin(}}{\mathit{\theta }_{\rm{0}}}{\rm{ + }}\mathit{\theta }{\rm{)}}}}{{\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - (}}\mathit{mG}{{\rm{)}}^{\rm{2}}}} }}} \right]{\rm{cos}}{\mathit{\varphi }_{\rm{0}}}} \right\} \end{array} $

      (8)

      1阶衍射光的光强最大,且在刻栅过程中起主要作用,在此只讨论±1阶衍射光相互干涉情况,干涉光的电场强度为:

      $ \begin{array}{c} {\rm{d}}{\mathit{E}_\mathit{\theta }}\left( {\mathit{s}{\rm{, }}\mathit{t}} \right){\rm{ = }}\sqrt {\mathit{f}\left( \mathit{\theta } \right)} \left[ {\sqrt {{\mathit{I}_\mathit{1}}} {\rm{exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{1}}\mathit{, s}}}\mathit{s}} \right){\rm{exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{1, }}\mathit{t}}}\mathit{t}{\rm{) + }}\\ \sqrt {{\mathit{I}_{{\rm{ - 1}}}}} {\rm{exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{ - 1, }}\mathit{s}}}\mathit{s}{\rm{)exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{ - 1, }}\mathit{t}}}\mathit{t}{\rm{)]d}}\mathit{\theta } \end{array} $

      (9)

      式中,I1I-1分别为±1阶衍射光的直流光强,跟衍射效率有关,此处假设均为0.5;K1, sK1, t分别为1阶衍射光波失在s方向和t方向上的分量;K-1, sK-1, t分别为-1阶衍射光波失在s方向和t方向上的分量;f(θ)为紫外光束在Δθ内呈高斯分布的分布函数,即:

      $ \mathit{f}\left( \mathit{\theta } \right){\rm{ = }}\frac{1}{{\sqrt {{\rm{2 \mathit{ π} }}} {\rm{\Delta }}\mathit{\theta }}}{\rm{exp}}\left[ {{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{{\left( {\frac{\mathit{\theta }}{{{\rm{\Delta }}\mathit{\theta }}}} \right)}^{\rm{2}}}} \right] $

      (10)

      则±1阶衍射光共同作用的干涉光强为:

      $ \begin{array}{c} {\mathit{I}_{{\rm{ \pm 1}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{ - \frac{{{\rm{\Delta }}\mathit{\theta }}}{{\rm{2}}}}^{\frac{{{\rm{\Delta }}\mathit{\theta }}}{{\rm{2}}}} {{\rm{[exp}}\left( {{\rm{i}}{\mathit{\boldsymbol{K}}_{{\rm{1,}}\mathit{s}}}\mathit{s}} \right){\rm{exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{1,}}\mathit{t}}}\mathit{t}{\rm{) + }}} \\ {\rm{exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{ - 1,}}\mathit{s}}}\mathit{s}{\rm{)exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{ - 1,}}\mathit{t}}}\mathit{t}{\rm{)][exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{1}}{\rm{.}}\mathit{s}}}\mathit{s}{\rm{)exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{1,}}\mathit{t}}}\mathit{t}{\rm{) + }}\\ {\rm{exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{ - 1,}}\mathit{s}}}\mathit{s}{\rm{)exp(i}}{\mathit{\boldsymbol{K}}_{{\rm{ - 1,}}\mathit{t}}}\mathit{t}{\rm{)}}{{\rm{]}}^{\rm{*}}}\mathit{f}{\rm{(}}\mathit{\theta }{\rm{)d}}\mathit{\theta } \end{array} $

      (11)

      θ看作自变量,采用1阶泰勒函数展开的方法,由(8) 式~(11)式可得:

      $ {\mathit{I}_{{\rm{ \pm 1}}}} \approx \frac{{\rm{1}}}{{{\rm{2}}\sqrt {{\rm{2 \mathit{ π} }}} }}\left\{ {\frac{{{\rm{11}}}}{{{\rm{12}}}}{\rm{[2 + cos}}\mathit{D}{\rm{] - cos}}\mathit{D}{\rm{ \times }}\frac{{{\rm{17\Delta }}{\mathit{\theta }^{\rm{2}}}}}{{{\rm{240}}}}} \right\} $

      (12)

      其中,

      $ \begin{array}{c} \mathit{D}{\rm{ = 2}}\mathit{Gs}{\rm{cos}}{\mathit{\varphi }_{\rm{0}}}{\rm{ + 2}}\mathit{tG}{\rm{sin}}{\mathit{\varphi }_{\rm{0}}}{\rm{ - }}\\ \frac{{{\rm{2}}\mathit{Gs}{\mathit{K}_{{\rm{UV}}}}{\mathit{\theta }_{\rm{0}}}\mathit{sin}{\mathit{\varphi }_{\rm{0}}}}}{{\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - }}{\mathit{G}^{\rm{2}}}} }}{\rm{ + }}\frac{{{\rm{2}}\mathit{Gt}{\mathit{K}_{{\rm{UV}}}}{\mathit{\theta }_{\rm{0}}}{\rm{cos}}{\mathit{\varphi }_{\rm{0}}}}}{{\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - }}{\mathit{G}^{\rm{2}}}} }} \end{array} $

      (13)

      由(12)式可知,紫外准分子激光无论是发散或是会聚(Δθ取正值或负值),干涉光强均会减小。

      将(13)式中s的系数记为ws,即:

      $ {\mathit{w}_\mathit{s}}{\rm{ = 2}}\mathit{G}{\rm{cos}}{\mathit{\varphi }_{\rm{0}}}{\rm{ - }}\frac{{{\rm{2}}\mathit{Gs}{\mathit{K}_{{\rm{UV}}}}{\mathit{\theta }_{\rm{0}}}{\rm{sin}}{\mathit{\varphi }_{\rm{0}}}}}{{\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - }}{\mathit{G}^{\rm{2}}}} }} $

      (14)

      WFBG的反射波长为:

      $ {\mathit{\lambda }_\mathit{b}}{\rm{ = 2}}{\mathit{n}_{{\rm{eff}}}}{\mathit{\Lambda }_{{\rm{ \pm 1}}}}{\rm{ = 2}}{\mathit{n}_{{\rm{eff}}}}\frac{{{\rm{2 \mathit{ π} }}}}{{{\mathit{w}_\mathit{s}}}} $

      (15)

      式中,neff为纤芯的有效折射率;Λ±1为±1阶衍射光干涉条纹周期。

      由(14) 式、(15)式可知,随着掩模板与光纤的夹角变大(φ0小角度变大),WFBG反射波长向长波长方向移动;随着紫外准分子激光与掩模板夹角变大(θ0小角度变大),WFBG反射波长同样往长波长方向移动。

      将(13)式中t的系数记为wt,即:

      $ {\mathit{w}_\mathit{t}}{\rm{ = 2}}\mathit{G}{\rm{sin}}{\mathit{\varphi }_{\rm{0}}}{\rm{ + }}\frac{{{\rm{2}}\mathit{G}{\mathit{K}_{{\rm{UV}}}}{\mathit{\theta }_{\rm{0}}}{\rm{cos}}{\mathit{\varphi }_{\rm{0}}}}}{{\sqrt {{\mathit{K}_{{\rm{UV}}}}^{\rm{2}}{\rm{ - }}{\mathit{G}^{\rm{2}}}} }} $

      (16)

      由(12) 式、(13) 式、(16) 式可知,当θ0小角度增大时,干涉光强减小;当φ0小角度增大时,干涉光强同样减小。

      综上所述,紫外准分子激光会聚或发散都将引起±1级衍射光的干涉光强降低,从而引起FBG反射率减小。紫外光与掩模板相互垂直,干涉光强最大,发生斜入射后,干涉光强降低,波长向长波长方向移动。掩模板与光纤相互平行,干涉光强最大,发生倾斜后,干涉光强降低,波长向长波长方向移动。此外,把θ看作自变量,采用1阶泰勒函数展开,导致Δθ与中心波长的变化无关,实际上,紫外激光发散导致中心波长向长波长漂移;会聚导致中心波长向短波长方向漂移[20]。因此,为使刻栅系统效率最大,必须调节紫外准分子激光束平行,激光束与相位掩模板垂直,相位掩模板与待刻光纤平行。

    • 把栅长为L的FBG平均分为M段(Δz=L/M),第k个分段的传输矩阵为[21]

      $ \begin{array}{c} {\mathit{\boldsymbol{F}}_\mathit{k}}{\rm{ = }}\\ \left[ {\begin{array}{*{20}{c}} {{\rm{cosh(}}\mathit{\gamma }{\rm{\Delta }}\mathit{z}{\rm{) - i}}\frac{{\mathit{\hat \sigma }}}{\mathit{\gamma }}{\rm{sinh(}}\mathit{\gamma }{\rm{\Delta }}\mathit{z}{\rm{)}}}&{{\rm{ - i}}\frac{\mathit{\kappa }}{\mathit{\gamma }}{\rm{sinh(}}\mathit{\gamma }{\rm{\Delta }}\mathit{z}{\rm{)}}}\\ {{\rm{i}}\frac{\mathit{\kappa }}{\mathit{\gamma }}{\rm{sinh(}}\mathit{\gamma }{\rm{\Delta }}\mathit{z}{\rm{)}}}&{{\rm{cosh(}}\mathit{\gamma }{\rm{\Delta }}\mathit{z}{\rm{) + i}}\frac{{\mathit{\hat \sigma }}}{\mathit{\gamma }}{\rm{sinh(}}\mathit{\gamma }{\rm{\Delta }}\mathit{z}{\rm{)}}} \end{array}} \right] \end{array} $

      (17)

      式中,$\mathit{\gamma }{\rm{ = }}{\left( {{\mathit{\kappa }^{\rm{2}}}{\rm{ - }}\mathit{\hat \sigma }} \right)^{{\rm{1/2}}}}$,${\mathit{\hat \sigma }}$为直流自耦合系数:

      $ \mathit{\hat \sigma }{\rm{ = }}\mathit{\delta }{\rm{ + }}\mathit{\sigma } $

      (18)

      式中,δ为归一化频率失谐量, δ=β-π/Λ=2πneff(1/λ-1/λB),λ为光源入射波长,λB为FBG的设计波长, σκ分别为直流和交流耦合系数:

      $ \mathit{\sigma }{\rm{ = }}\frac{{{\rm{2 \mathit{ π} }}}}{\mathit{\lambda }}\overline {{\rm{\Delta }}\mathit{n}} $

      (19)

      $ \mathit{\kappa }{\rm{ = }}\frac{{\rm{ \mathit{ π} }}}{\mathit{\lambda }}\mathit{v}\overline {{\rm{\Delta }}\mathit{n}} $

      (20)

      式中,v为折射率调制的条纹可见度,$\overline {{\rm{\Delta }}\mathit{n}} $为平均折射率变化。

      整段FBG传输矩阵即为:

      $ \mathit{\boldsymbol{F}}{\rm{ = }}\left[ {\begin{array}{*{20}{c}} {{\mathit{F}_{{\rm{11}}}}}&{{\mathit{F}_{{\rm{12}}}}}\\ {{\mathit{F}_{{\rm{21}}}}}&{{\mathit{F}_{{\rm{22}}}}} \end{array}} \right]{\rm{ = }}{\mathit{\boldsymbol{F}}_\mathit{M}}{\mathit{\boldsymbol{F}}_{\mathit{M}{\rm{ - 1}}}}{\rm{ \ldots }}{\mathit{\boldsymbol{F}}_\mathit{k}}{\rm{ \ldots }}{\mathit{\boldsymbol{F}}_{\rm{1}}} $

      (21)

      整段FBG功率反射率即为:

      $ {\mathit{R}_{{\rm{FBG}}}}{\rm{ = }}{\left| {\frac{{{\mathit{F}_{{\rm{21}}}}}}{{{\mathit{F}_{{\rm{11}}}}}}} \right|^{\rm{2}}} $

      (22)

      对(22)式仿真,λ取为1548nm~1552nm;M取为50;$\overline {{\rm{\Delta }}\mathit{n}} $取为1×10-4neff取为1.48;λB取为1550nm;v取为1。L分别取为1mm,2mm,5mm和10mm,不同栅长的FBG反射光谱如图 2a所示, 反射率分别为0.041,0.148,0.589,0.933;3dB带宽分别为0.219nm,0.090nm,0.052nm,0.036nm。L取为1mm,$\overline {{\rm{\Delta }}\mathit{n}} $分别取为1×10-4, 1.5×10-4和2×10-4时,FBG反射光谱如图 2b所示, 反射率分别为0.041,0.064,0.078;3dB带宽分别为0.219nm,0.265nm,0.315nm。由此,在反射率一定的情况下,若要刻制3dB带宽较窄的WFBG,需要采用较长的相位掩模板,控制较短的曝光时间,选用较低的光纤掺杂浓度,使平均折射率变化较小;若要刻制3dB带宽较宽的WFBG,需要选用较窄的相位掩模板,控制较长的曝光时间,选用较高的光纤掺杂浓度,使平均折射率变化较大。

      Figure 2.  Reflection spectra of FBGs with different grating lengths

      由上述理论分析得出,采用相位掩模板法刻制WFBG,需要调节紫外准分子激光束平行,并与相位掩模板垂直,且相位掩模板与光纤平行。若刻制窄带宽FBG需要较长的相位掩模板,刻制宽带宽FBG需要较窄的相位掩模板。

    • 图 3显示为窄带宽WFBG刻栅与实时显示系统。刻栅系统中,激光器(型号:Coherent COMPexPro 110)出射248nm的紫外准分子激光;采用两个焦距分别为150mm和300mm的平凸柱透镜(L1,L2)实现横向2倍激光准直扩束,以及一个焦距为50mm的平凸柱镜(L3)压缩曝光光束纵向尺寸,从而聚焦纵向激光能量;相位掩模板的长度为10mm,周期为1058.74nm,零级衍射效率为1.1%;待刻写光纤采用长飞公司G652D单模阶跃光纤。在线监测系统中,宽带光由环形器端口1注入,经端口2所接WFBG反射后,由端口3输出至光谱仪。

      Figure 3.  WFBG fabrication and real time display system

      为估算WFBG的反射率,采用一个与WFBG同波长的、已知反射率的FBG进行参考计算。分别将参考FBG和待测WFBG连接在环形器的端口2上,得到反射光谱(如图 4所示)。假设两次测量的光源光强无变化,则由两者的反射光强比值即可计算得WFBG的反射率,如下:

      $ {\mathit{R}_{{\rm{WFBG}}}}{\rm{ = }}\frac{{{\mathit{I}_{{\rm{WFBG}}}}{\mathit{R}_{{\rm{FBG}}}}}}{{{\mathit{I}_{{\rm{FBG}}}}}} $

      (23)

      Figure 4.  Spectra of reference FBG and WFBG

      式中,IWFBG, RFBG, IFBG分别为WFBG的最大反射光强、FBG的反射率和FBG的最大反射光强,计算过程中需要把光强单位dBm转换为mW。另外,观察WFBG的反射光谱细节,谱型较为对称,边模抑制比较高。

      固定紫外准分子激光的曝光频率为30Hz、脉冲能量为90mJ,曝光次数分别设置为100次、200次、300次、400次、500次、1000次和2000次,制备了7根WFBG(见图 5)。WFBG的反射率从0.00017递增至0.0033,确定系数为0.9806。分析斜率小的原因主要为所曝光的光纤为普通单模光纤,光敏性不及掺杂、载氢光纤。

      Figure 5.  Spectra of 7 WFBGs with different exposure times

      曝光400次时,WFBG的反射率约为0.001。固定曝光频率30Hz、能量90mJ、曝光次数400次,刻写7根WFBG,反射光谱如图 6所示。

      Figure 6.  Spectra of 7 WFBGs with narrow bandwidth under exposure of 400 times

      图 6中7根WFBG的相关参量如表 1所示。7根WFBG的中心波长范围为1531.973nm~1532.046nm,平均值为1532.027nm,标准差为0.023nm;反射率变化范围为0.0007~0.0021,平均值为0.0016,标准差为0.0004;3dB带宽变化范围为0.08nm~0.12nm,平均值为0.096nm,标准差为0.013nm。由此,7根WFBG的3dB带宽较窄,适合波长解调使用,且反射率较为一致,虽然中心波长差别较大,但对波长解调不会有影响。

      Table 1.  Related parameters of 7 WFBGs under exposure of 400 times

      central wavelength/nm reflectivity 3dB bandwidth/nm
      1 1532.034 0.0019 0.08
      2 1532.042 0.0007 0.12
      3 1532.023 0.0018 0.09
      4 1532.046 0.0017 0.09
      5 1531.973 0.0013 0.11
      6 1532.041 0.0019 0.09
      7 1532.029 0.0021 0.09
      average value 1532.027 0.0016 0.096
      root mean square 0.023 0.0004 0.013
    • 由第1.2节可知,缩短FBG的长度,可以增大FBG的3dB带宽,但反射率会降低,可以通过增大光纤的平均折射率变化来提高反射率。基于此,在图 3刻栅系统中插入2mm长的光窗,使照射到相位掩模板上的紫外激光宽度为2mm,制备宽带宽WFBG,现场照片如图 7所示。

      Figure 7.  WFBG with wide bandwidth fabrication process display

      固定紫外准分子激光的曝光频率为30Hz、脉冲能量为90mJ,曝光次数设置为5000次, 刻写了6根WFBG,反射光谱如图 8所示。由图可知,反射光谱的谱型较为对称。

      Figure 8.  6 WFBGs with wide bandwidth under exposure of 5000 times

      图 8中6根WFBG的相关参量如表 2所示。由表 2可知,6根WFBG中心波长变化范围为1538.77nm~1538.92nm,平均值为1538.8533nm,标准差为0.0534nm。反射率变化范围为0.000048~0.000079,平均值为0.000061,标准差为0.00001。3dB带宽变化范围为0.316nm~0.386nm,平均值为0.3433nm,标准差为0.0227nm。由此,6根WFBG的3dB带宽较宽,适合匹配干涉解调使用,且反射率较为一致。

      Table 2.  Related parameters of 6 WFBGs under exposure of 5000 times

      central wavelength/nm reflectivity 3dB bandwidth/nm
      1 1538.864 0.000079 0.332
      2 1538.880 0.000058 0.316
      3 1538.892 0.000066 0.386
      4 1538.92 0.000052 0.344
      5 1538.772 0.000048 0.327
      6 1538.792 0.000063 0.355
      average value 1538.8533 0.000061 0.3433
      root mean square 0.0534 0.00001 0.0227

      综上所述,基于相位掩模板法,采用曝光频率为30Hz、脉冲能量为90mJ的248nm紫外准分子激光器在CSMF上制备WFBG,其中采用10mm相位掩模板,曝光400次制备出窄带宽WFBG,平均中心波长为1532.0289nm,反射率为0.001629,3dB带宽为0.09517nm;采用2mm光窗遮挡相位掩模板,曝光5000次制备出宽带宽WFBG,平均中心波长为1538.8533nm,反射率为0.000061,3dB带宽为0.3433nm。

    • 利用相位掩模板在CSMF上制备出了窄带宽和宽带宽2种WFBG。为调节相位掩模板刻栅系统,综合分析了紫外准分子激光平行度及其与相位掩模板和光纤的位置关系对照射在光纤上干涉光场的影响,为刻栅系统调节提供了理论支撑。采用传输矩阵法分析了FBG长度和光纤平均折射率变化对FBG中心波长、反射率和3dB带宽的影响,为相位掩模板的选用提供了理论依据。采用相位掩模板和光窗由248nm紫外准分子激光多脉冲曝光CSMF刻写WFBG,制备出了反射率约为0.0016、3dB带宽约为0.10nm的窄带宽WFBG和反射率约为0.00006、3dB带宽约为0.34nm的宽带宽WFBG。该刻栅方法优势在于取代了光敏掺杂光纤制备WFBG,降低了材料成本和光纤传输损耗,但刻写过程需要紫外激光多脉冲曝光,效率不及单脉冲在线刻栅技术。

参考文献 (21)

目录

    /

    返回文章
    返回