[1]
|
ZHAO F, HARRINGTON D L, LAI M C D. Automotive gasoline direct-injection engines[J]. Revolution, 2002, 2004(1):3-8. |
[2]
|
WIJETUNGE R S, BRACE C J, HAWLEY J G, et al. Dynamic behaviour of a high speed direct injection diesel engine[R]. Detroit,USA:SAE International, 1999:1-829. |
[3]
|
HONDA T, KAWAMOTO M, KATASHIBA H, et al. A study of mixture formation and combustion for spray guided DISI[R]. Detroit,USA:SAE International, 2004:1-46. |
[4]
|
DAHMS R, FANSLER T D, DRAKE M C, et al. Modeling ignition phenomena in spray-guided spark-ignited engines[J]. Proceedings of the Combustion Institute, 2009, 32(2):2743-2750. |
[5]
|
KAWAHARA N, TOMITA E, KADOWAKI T, et al.In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method[J]. Experiments in Fluids, 2010, 49(4):925-936. |
[6]
|
GUPTA S. Technologies for gaseous fueled advanced reciprocating engine systems[C]//US DOE Industrial Distributed Energy Portfolio Review Meeting.Washington DC,USA:United States Department of Energy, 2011:DE-AC02-06CH 11357. |
[7]
|
CREMERS D A, YUEH F Y, SINGH J P, et al.Laser-induced breakdown spectroscopy, elemental analysis[M]. New York,USA:John Wiley Sons, 2006:53-62. |
[8]
|
SINGH J P, THAKUR S N. Laser-induced breakdown spectroscopy[M].Amsterdam, Netherlands:Elsevier, 2007:42-53. |
[9]
|
KAWAHARA N, BEDUNEAU J L, NAKAYAMA T, et al. Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air[J]. Applied Physics, 2007, B86(4):605-614. |
[10]
|
BEDUNEAU J L, KAWAHARA N, NAKAYAMA T, et al. Laser-induced radical generation and evolution to a self-sustaining flame[J]. Combustion and Flame, 2009, 156(3):642-656. |
[11]
|
GROB V, KUBACH H, SPICHER U, et al. Influence of laser-induced ignition on spray-guided combustion-experimental results and numerical simulation of ignition processes[R]. Detroit,USA:SAE International, 2009:1-2623. |
[12]
|
PICKETT L M, KOOK S, PERSSON H, et al. Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition[J]. Proceedings of the Combustion Institute, 2009, 32(2):2793-2800. |
[13]
|
CHEN Z Q, WANG X B, ZUO D L, et al. Detecting tin droplet used for EUV source[J]. High Power Laser and Particle Beams, 2014, 26(12):39-43(in Chinese). |
[14]
|
RAYLEIGH L. On the instability of jets[J]. Proceedings of the London Mathematical Society, 1878,S1/10(1):4-13. |
[15]
|
LI X Q, HONG Y J, HE G Q, et al. Status of study on the effect of laser radiation to water droplet[J]. Laser Journal, 2007, 28(4):70-72(in Chinese). |
[16]
|
KAFALAS P, FERDINAND A P. Fog droplet vaporization and fragmentation by a 10.6m laser pulse[J]. Applied Optics, 1973, 12(1):29-33. |
[17]
|
JEONG S H, GREIF R, RUSSO R E. Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples[J]. Journal of Physics, 1999, D32(19):2578-2585. |
[18]
|
ADEN M, KREUTZ E W, WISSENBACH K. The applicability of the Sedov-Taylor scaling during material removal of metals and oxide layers with pulsed and excimer laser radiation[J]. Journal of Physics, 1997, D30(6):980-989. |
[19]
|
JEON C, HARPER D, LIM K, et al. Interaction of a single laser filament with a single water droplet[J]. Journal of Optics, 2015, 17(5):055502. |
[20]
|
KAFALAS P, HERRMANN J. Dynamics and energetics of the explosive vaporization of fog droplets by a 10.6m laser pulse[J]. Applied Optics, 1973, 12(4):772-775. |
[21]
|
TIANHANG L, ZUOQIANG H, XUN G, et al. Shadowgraph investigation of plasma shock wave evolution from Al target under 355nm laser ablation[J]. Chinese Physics, 2014, B23(8):085203. |