高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于二氧化钒材料的可调谐吸波器设计

道日娜 孔心茹 章海锋 苏欣然

引用本文:
Citation:

一种基于二氧化钒材料的可调谐吸波器设计

    作者简介: 道日娜(1998-), 女, 大学本科生, 现主要从事超材料吸波器、电磁超材料的研究.
    通讯作者: 章海锋, hanlor@163.com
  • 基金项目:

    东南大学毫米波国家重点实验室开放课题资助项目 K201927

    国家级大学生创新训练计划资助项目 SZDG2018012

  • 中图分类号: O436;O53

Design of a tunable microwave absorber based on vanadium dioxide

    Corresponding author: ZHANG Haifeng, hanlor@163.com ;
  • CLC number: O436;O53

  • 摘要: 为了在THz波段获得TE波下的可调谐吸收频谱, 采用全波仿真的方法, 设计了一款基于二氧化钒材料的可调谐THz吸波器, 对该吸波器的吸收频谱、电场图、表面电流图以及能量损耗图进行分析, 并讨论了结构参量h4, k以及入射角度θ对吸收频域和吸收带宽的影响。结果表明, 通过外部温控的方式改变二氧化钒谐振单元的物理特性可以获得可调谐的吸收频谱并改善吸波器的吸收性能, 该吸波器在温度T≥68℃时, 可以实现在2.70THz~3.36THz频段的宽带吸收(吸收率在90%以上), 相对带宽达到21.8%;在T<68℃时, 可以实现多个单频点的吸收; 改变结构参量h4, k可以改变吸收频点的位置以及吸收带宽, 改变入射角度θ可以影响吸波器的吸收效果。该研究对可调谐太赫兹器件的进一步探究是有帮助的。
  • Figure 1.  Metal resonant unit diagram of the proposed absorber

    Figure 2.  Side view of the proposed absorber

    Figure 3.  Absorption curves of the absorber at different temperatures

    Figure 4.  Distribution of electric field of the absorber at different frequencies

    Figure 5.  Surface current diagram of the bottom metal plate at different frequencies

    Figure 6.  Power loss density of the absorber at different frequencies

    Figure 7.  Absorption curves with different structure parameters h4 and k

    Figure 8.  Absorption curves under different incident angles θ=0°, 20°, 40°, 60°, 80°

    Table 1.  Parameters of the absorber

    parameters a b c d
    value/μm 66 2 0.2 3.8
    parameters e f g i
    value/μm 60.2 56.4 10 52.6
    parameters j k m p
    value/μm 48.8 0.01 10 70
    parameters h1 h2 h3 h4
    value/μm 0.1 2 1.8 1
    下载: 导出CSV
  • [1]

    LINDELL I V, TRETYAKOV S A, NIKOSKINEN K I, et al. BW media—media with negative parameters, capable of supporting backward waves[J]. Microwave and Optical Technology Letters, 2001, 31(2): 129-133. doi: 10.1002/(ISSN)1098-2760
    [2]

    VESELAGO V G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability[J]. Physics, 1968, 10(4): 509-514.
    [3]

    CALOZ C, ITOH T. Novel microwave devices and structures based on the transmission line approach of meta-materials[C]// Microwave Symposium Digest, 2003 IEEE MTT-S International. New York, USA: IEEE, 2003: 195-198.
    [4]

    PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782. doi: 10.1126/science.1125907
    [5]

    TAO H, BINGHA M, STRIKWERDA A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization[J]. Physical Review, 2008, B78(24): 241103.
    [6]

    ZHOU J, DONG J, WANG B, et al. Negative refractive index due to chirality [J]. Physical Review, 2009, B79(12): 121104.
    [7]

    ARSENAULLT A C, PUZZO D P, MANNERS I, et al. Photonic-crystal full-colour displays[J]. Nature Photonics, 2007, 1(8):468-472. doi: 10.1038/nphoton.2007.140
    [8]

    AKAHANE Y, ASANO T, SONG B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961):944-947. doi: 10.1038/nature02063
    [9]

    PARIMI P V, LU W T, VODO P, et al. Photonic crystals: Imaging by flat lens using negative refraction[J]. Nature, 2003, 426(6965): 404-408. doi: 10.1038/426404a
    [10]

    SMITH D R, KROLL N. Negative refractive index in left-handed materials[J]. Physical Review Letters, 2000, 85(14):2933-2936. doi: 10.1103/PhysRevLett.85.2933
    [11]

    YIN Q T, YAO G, SHI S J, et al. Study on transparency structure induced by tunable teraherz plasmon[J]. Laser Technology, 2017, 41(6): 826-830 (in Chinese).
    [12]

    ZHU X W, WANG X B, FU Y F, et al. Research of collector mi-rrors of CO2 laser produced plasma EUV source[J]. Laser Technology, 2010, 34(6):725-728(in Chinese).
    [13]

    LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [14]

    MASTRODDI F, FACCHINI G, GAUDENZI P. Multi-frequency dynamic absorber for improved spacecraft comfort during the launch phase[J]. CEAS Space Journal, 2012, 3(3/4):77-88.
    [15]

    PU M B, WANG M, HU C, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime[J]. Optics Express, 2012, 20(23):25513-25519. doi: 10.1364/OE.20.025513
    [16]

    AMIN M, FARHAT M, BAGCI H. An ultra-broadband multilayered graphene absorber[J]. Optics Express, 2013, 21(24):29938-29948. doi: 10.1364/OE.21.029938
    [17]

    CHAO G U, SHAOBO Q U, PEI Z B, et al. A wide-band metamaterial absorber based on loaded magnetic resonators[J]. Chinese Physics Letters, 2011, 28(6):067808. doi: 10.1088/0256-307X/28/6/067808
    [18]

    XU Y L, LI E P, WEI X C, et al. A novel tunable absorber based on vertical graphene strips[J]. IEEE Microwave & Wireless Components Letters, 2016, 26(1):10-12.
    [19]

    MORIN F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Physical Review Letters, 1959, 3(1): 34-36. doi: 10.1103/PhysRevLett.3.34
    [20]

    SCHOISWOHL J, KRESSE G, SURNEV S, et al. Planar vanadium oxide clusters: Two-dimensional evaporation and diffusion on Rh(111)[J]. Physical Review Letters, 2004, 92(20):206103. doi: 10.1103/PhysRevLett.92.206103
    [21]

    WU W H, WANG D P, HUANG W H, et al. Property of VO2 thin film affected by doping and treatment temperature[J]. Journal of Building Materials, 2006, 9(5):548-554.
    [22]

    CAVALLERI A, TOTH C, SIDERS C W, et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition[J]. Physical Review Letters, 2001, 87(23):237401. doi: 10.1103/PhysRevLett.87.237401
    [23]

    DUMASBOUCHIAT F, CHAMPEAUX C, CATHERINOT A, et al. RF microwave switches based on reversible metal-semiconductor transition properties of VO2 thin films: An attractive way to realise simple RF microelectronic devices[J]. MRS Proceedings, 2008, 1129(2): 021109.
    [24]

    HA S D, ZHOU Y, FISHER C J, et al. Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices[J]. Journal of Applied Physics, 2013, 113(18):184501. doi: 10.1063/1.4803688
    [25]

    SEO M, KYOUNG J, PARK H, et al. Active terahertz nanoantennas based on VO2 phase transition[J]. Nano Letters, 2010, 10(6):2064-2068. doi: 10.1021/nl1002153
    [26]

    LIU Z M, LI Y, ZHANG J, et al. A tunable metamaterial absorber based on VO2/W multilayer structure[J]. IEEE Photonics Techno-logy Letters, 2017, PP(99):1.
  • [1] 张浩章海锋杨靖刘佳轩 . 一种基于等离子体超材料的吸波器设计. 激光技术, 2018, 42(5): 704-708. doi: 10.7510/jgjs.issn.1001-3806.2018.05.022
    [2] 章海锋 . 3维函数光子晶体的特性研究. 激光技术, 2018, 42(3): 318-324. doi: 10.7510/jgjs.issn.1001-3806.2018.03.006
    [3] 任广军姚建铨赵阶林 . 波片和旋转器复合退偏的矩阵研究. 激光技术, 2007, 31(3): 314-316.
    [4] 郭淑霞单雄军张政高颖 . 典型场景下电波传播特性建模. 激光技术, 2015, 39(1): 124-128. doi: 10.7510/jgjs.issn.1001-3806.2015.01.025
    [5] 邵俊平吴福全洪芳王丽丽 . 晶体二向色性对波片性能的影响. 激光技术, 2009, 33(2): 156-158.
    [6] 刘云安李国华彭捍东 . 波片组合在调整偏振态势中的应用与分析. 激光技术, 2007, 31(4): 391-393.
    [7] 朱峰吴刚罗相根饶睿坚彭政 . 变化入射角的激光在毛细波上的衍射. 激光技术, 2010, 34(6): 809-811,831. doi: 10.3969/j.issn.1001-3806.2010.06.024
    [8] 王喜宝宋连科朱化凤郝殿中蔡君古 . 连续偏光干涉法测量波片宽波段延迟量变化. 激光技术, 2012, 36(2): 255-257,261. doi: 10.3969/j.issn.1001-3806.2012.02.028
    [9] 程阳 . 1维全息光子晶体的偏振特性. 激光技术, 2010, 34(2): 279-281. doi: 10.3969/j.issn.1001-3806.2010.02.037
    [10] 金铱黄正逸陈宪锋唐丽是度芳 . 光子晶体缺陷模的偏振特性研究. 激光技术, 2007, 31(3): 277-280.
    [11] 闫明宝傅振堂王伟宇 . 2维超晶格结构光子晶体传输特性研究. 激光技术, 2012, 36(1): 77-79,110. doi: 10.3969/j.issn.1001-3806.2012.01.019
    [12] 刘瑾杨海马 . 参量变化对长程表面等离子体波特性的影响. 激光技术, 2017, 41(2): 221-224. doi: 10.7510/jgjs.issn.1001-3806.2017.02.015
    [13] 闫明宝周萍王海龙 . SiO2/Si光子晶体透射特性的数值研究. 激光技术, 2009, 33(1): 50-52,70.
    [14] 陈海波胡素梅高英俊 . 复介电缺陷层镜像对称1维光子晶体特性研究. 激光技术, 2008, 32(5): 531-533.
    [15] 章海锋郑建平杨国华 . 1维时变磁化等离子体光子晶体的密温特性. 激光技术, 2011, 35(1): 74-78. doi: 10.3969/j.issn.1001-3806.2011.01.021
    [16] 章海锋蓝鹏飞杨国华肖正泉 . 1维3元非磁化等离子体光子晶体禁带特性研究. 激光技术, 2011, 35(4): 566-569,572. doi: 10.3969/j.issn.1001-3806.2011.04.031
    [17] 何世昆梁良张玲曹建建 . 缺陷为增益介质的光子晶体光放大特性的研究. 激光技术, 2012, 36(3): 368-371.
    [18] 章海锋郑建平朱荣军 . 1维3元磁化等离子体光子晶体传输特性分析. 激光技术, 2012, 36(2): 208-212,216. doi: 10.3969/j.issn.1001-3806.2012.02.016
    [19] 吴忠叶云霞张永康张磊管海兵 . 平顶高斯光束通过扩束系统的传输特性研究. 激光技术, 2011, 35(6): 861-864. doi: 10.3969/j.issn.1001-3806.2011.06.036
    [20] 黄订邱复生 . 广义高斯光束中光斑半径和曲率半径特性研究. 激光技术, 2013, 37(2): 256-260. doi: 10.7510/jgjs.issn.1001-3806.2013.02.029
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  660
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-14
  • 录用日期:  2018-11-15
  • 刊出日期:  2019-07-25

一种基于二氧化钒材料的可调谐吸波器设计

    通讯作者: 章海锋, hanlor@163.com
    作者简介: 道日娜(1998-), 女, 大学本科生, 现主要从事超材料吸波器、电磁超材料的研究
  • 1. 南京邮电大学 电子与光学工程、微电子学院, 南京 210023
  • 2. 南京邮电大学 电子科学与技术国家级实验教学示范中心, 南京 210023
  • 3. 南京邮电大学 信息电子技术国家级虚拟仿真实验教学中心, 南京 210023
  • 4. 东南大学 毫米波国家重点实验室, 南京 210096
基金项目:  东南大学毫米波国家重点实验室开放课题资助项目 K201927国家级大学生创新训练计划资助项目 SZDG2018012

摘要: 为了在THz波段获得TE波下的可调谐吸收频谱, 采用全波仿真的方法, 设计了一款基于二氧化钒材料的可调谐THz吸波器, 对该吸波器的吸收频谱、电场图、表面电流图以及能量损耗图进行分析, 并讨论了结构参量h4, k以及入射角度θ对吸收频域和吸收带宽的影响。结果表明, 通过外部温控的方式改变二氧化钒谐振单元的物理特性可以获得可调谐的吸收频谱并改善吸波器的吸收性能, 该吸波器在温度T≥68℃时, 可以实现在2.70THz~3.36THz频段的宽带吸收(吸收率在90%以上), 相对带宽达到21.8%;在T<68℃时, 可以实现多个单频点的吸收; 改变结构参量h4, k可以改变吸收频点的位置以及吸收带宽, 改变入射角度θ可以影响吸波器的吸收效果。该研究对可调谐太赫兹器件的进一步探究是有帮助的。

English Abstract

    • 超材料是指具有一些超常物理特性的人工媒质,其单元尺寸远小于工作波长,通过合理的结构和参量设计,可以获得常规材料不具有的电磁特性[1-2],因而得到了广泛关注。随着对超材料研究的不断推进,超材料在微波器件[3]、隐身技术[4]、电磁吸波[5]等领域的应用价值也被逐渐发现。现阶段广泛研究的超材料主要包括电超材料[6]、磁超材料、光子晶体[7-8]、左手材料[9-10]、等离子体超材料[11-12]等。从LANDY等人首次提出“完美吸波器”,在窄带范围内实现了接近100%的吸收[13]以后,超材料吸波器发展迅速,在频点增加[14]、带宽展宽[15-16]、可调谐[17-18]等多个方面都取得了巨大进展。目前,吸波器的调谐大多是通过对其结构参量的改变进行调控,属于被动调控,制备之后其吸波性能无法改变,缺乏普适性。用二氧化钒(VO2)等相变材料与电磁超材料来构建吸波器,可以很好地解决这一问题,通过改变光强、温度、电场等外部环境条件对吸波器的吸收性能进行调控。

      二氧化钒是一种室温相变材料,具有绝缘体-金属相变特征,相变温度为68℃[19-22]。在其相变过程中,其电导率迅速增大,且这个过程是可逆的,且相变速度快。由于二氧化钒这种特殊的性质,近年来被越来越多地应用于微电子、光电子领域。DUMASBOUCHIAT等人将基于VO2的微波开关集成到可调谐的带通滤波器中,通过对VO2的开关的电激活对其进行调控[23]。HA等人将VO2集成到两端共面波导中,在VO2发生相变后在13.5GHz的插入损耗为2.95dB[24]。SEO等人设计了VO2薄膜与纳米谐振器混合的太赫兹纳米天线,其消光比超过10000[25]。LIU等人用VO2和W设计的可调谐吸波器,高低温之间的可调谐范围达到76.36%[26]。从现有的报道来看,将VO2用于THz宽带吸波波器设计的报道还较为鲜见。

      作者设计了一种工作在THz频段的基于二氧化钒材料和超材料的可调谐吸波器,通过对外界温度的调控,改变二氧化钒谐振单元的电导率,从而实现对该吸波器的动态调谐。当外界温度T≥68℃时,二氧化钒谐振单元表现为金属特性,实现吸波器的宽带吸收,而当外界温度T<68℃时,二氧化钒谐振单元表现为介质特性,可以实现多个单频点的吸收。

    • 图 1图 2是本文中提出的基于二氧化钒材料的可调谐吸波器的单元结构示意图。图 1是金属谐振单元的示意图。图 2是侧视图。由图可知,该结构单元包括两种介质基板、两种谐振单元以及金属反射板,共10层。自下而上,第1层为金属反射板(材料为金,电导率σ=4.561×107S/m), 第2层为SiO2介质基板(相对介电常数ε=3.9,无损耗),第3层、第5层、第7层、第9层为Y2O3(相对介电常数ε=3.06,无损耗)介质基板,第4层为金属谐振单元(材料为金), 第6层、第8层、第10层为VO2谐振单元。金属反射板的边长p=70μm,厚度h1=0.1μm。SiO2介质基板和第3层Y2O3介质基板的边长p=70μm,厚度h2, h3分别为2μm和1.8μm,第5层、第7层、第9层Y2O3介质基板的尺寸分别是第2层介质基板尺寸的(1-k)倍,(1-2k)倍, (1-3k)倍(k=0.01)。金属谐振单元和VO2谐振单元形状相同、尺寸不同,都由一个蛇形线结构、4个正方形谐振环和一个正方形谐振单元构成,第6层、第8层、第10层VO2谐振单元尺寸分别是金属谐振单元尺寸的(1-k)倍, (1-2k)倍, (1-3k)倍。金属谐振单元中,蛇形线的外边长a=66μm,线宽和线间距离b=2μm,缝隙g=10μm,正方形谐振环的线宽c=0.2μm,线间距离d=3.8μm,由外至内,第1个正方形谐振环的边长e=60.2μm,第2个正方形谐振环的边长f=56.4μm,第3个正方形谐振环的边长i=52.6μm,第4个正方形谐振环的边长j=48.8μm,正方形谐振单元的边长m=10μm,厚度h4=1μm。其它结构参量如表 1所示。电磁波波矢方向为沿-z方向垂直入射。本文中将TE波定义为:电场E平行于y轴,磁场H平行x轴。吸波器的吸收率A(ω)可以表示为A(ω)=1-R(ω)-T(ω)-S(ω),其中R(ω)为反射率,T(ω)为透射率,S(ω)为散射率。由于本文中设计的吸波器的最底层为金属反射板,所以透射率T(ω)=0,散射率S(ω)不考虑,那么吸收率将写为A(ω)=1-R(ω)。

      Figure 1.  Metal resonant unit diagram of the proposed absorber

      Figure 2.  Side view of the proposed absorber

      Table 1.  Parameters of the absorber

      parameters a b c d
      value/μm 66 2 0.2 3.8
      parameters e f g i
      value/μm 60.2 56.4 10 52.6
      parameters j k m p
      value/μm 48.8 0.01 10 70
      parameters h1 h2 h3 h4
      value/μm 0.1 2 1.8 1
    • 图 3是该吸波器不同温度时的吸收曲线。图 3a是高温状态下即温度T≥ 68℃时(VO2谐振单元表现为金属特性,电导率σ=1.5×105S/m)的吸收曲线。由图 3a可以看出,该吸波器在频带范围2.70THz~3.36THz的吸收率在90%以上,绝对带宽为0.66THz,相对带宽达到21.8%,其中有两个吸收峰值分别为93.0%和97.5%,分别位于2.77THz和3.18THz处。图 3b是低温状态下即温度T < 68℃时(VO2谐振单元表现为介质特性,电导率σ=0.74S/m)的吸收曲线。由图 3b可以看出,该吸波器在频带3.36THz到3.57THz的吸收率在90%以上,其5个吸收峰值分别为91.6%, 99.6%, 99.9%, 99.7%, 99.6%,分别位于1.27THz, 3.40THz, 3.52THz, 3.68THz, 4.09THz。对比图 3a图 3b的结果可知,在不同温度下,VO2谐振单元表现为不同物理特性,该吸波器的吸收频点以及吸收带宽都发生了明显的变化,当外部温度T≥68℃时,该吸波器的吸收带宽由6.1%展宽到21.8%。因此,可以通过对外部温度的控制,改变二氧化钒谐振单元的物理特性,以实现对该吸波器的动态调谐,改善该吸波器的吸收性能。

      Figure 3.  Absorption curves of the absorber at different temperatures

      图 4是高温状态下(T≥68℃)该吸波器在频点2.77THz和3.18THz的电场分布图。图 4a为该吸波器在频率2.77THz时的电场分布侧视图,图 4b为在频率3.18THz时的电场分布侧视图,图 4c为金属谐振单元在频率2.77THz处的电场分布图,图 4d为金属谐振单元在频率3.18THz处的电场分布图。由图 4可知,在这两个谐振峰在吸波器的不同位置出现电谐振,由图 4a图 4c可以看出,在2.77THz时电场主要集中在蛇形线的内圈; 由图 4b图 4d可以看出,在3.18THz时电场主要集中在正方形谐振单元的上下两端(如图中“O”形区域所示),此时可以等效为金属谐振单元上存在一个正电荷。图 5是高温状态下(T≥68℃)该吸波器底层金属板在频点2.77THz和3.18THz的表面电流图。图 5a是频点2.77THz处的表面电流图,图 5b是频点3.18THz处的表面电流图。由图 5a可知,频点2.77THz处表面电流主要集中在正方形谐振单元处,由图 5b可知,频点3.18THz处表面电流主要集中在蛇形线处(如图中“O”形区域所示),其方向如黑色箭头所示。此时,可以等效为底层金属反射板上存在一个负电荷。因此,吸波器在工作时,金属底板与上层的金属谐振单元可以等效为一个电偶极子。即等效为在介质基板的上下表面形成反向流动的电流,产生磁谐振,损耗电磁波能量,从而实现吸波器的吸波性能。

      Figure 4.  Distribution of electric field of the absorber at different frequencies

      Figure 5.  Surface current diagram of the bottom metal plate at different frequencies

      图 6是高温状态下(T≥68℃)该吸波器在2.77THz和3.18THz金属谐振单元和SiO2介质基板的能量损耗图。图 6a是金属谐振单元在2.77THz的能量损耗图,图 6b是金属谐振单元在3.18THz的能量损耗图,图 6c是SiO2介质基板在2.77THz的能量损耗图,图 6d是SiO2介质基板在3.18THz的能量损耗图。由图 6a图 6b可以看出,在两个不同频率下,入射电磁波的能量主要消耗在金属谐振单元上; 由图 6c图 6d可以看出,在介质基板上几乎没有能量损耗。因此,该吸波器主要能量损耗是由谐振单元和底层金属反射板之间的磁谐振引起的,介质基板自身的介质损耗贡献不大。

      Figure 6.  Power loss density of the absorber at different frequencies

      图 7中给出了高温状态下(T≥68℃)结构参量h4k对该吸波器吸收频谱的影响。图 7a是其它参量不变,结构参量h4(第3层Y2O3介质基板的厚度)分别为1.4μm, 1.6μm, 1.8μm, 2.0μm时该吸波器的吸收曲线。当h4=1.4μm时,该吸波器有一个吸收率较高的频点f0位于3.35THz, 其吸收率为98.6%,吸收频带(吸收率大于90%的频率范围)为2.96THz~3.52THz, 相对带宽为17.3%;当h4=1.6μm时,f0位于3.27THz,其吸收率为98.1%,吸收频带为2.80THz~3.43THz, 相对带宽为20.2%;h4=1.8μm时,f0位于3.18THz, 其吸收率为97.5%,吸收频带为2.70THz~3.36THz, 相对带宽为21.8%;h4=2.0μm时,f0位于3.12THz, 其吸收率为96.7%,吸收频带为2.98THz~3.29THz, 相对带宽为9.9%。由上述可知,随着h4的逐渐增大,f0的位置发生略微红移,其吸收率逐渐减小, 相对带宽先增大后减小,在h4=1.8μm时达到最大,此时该吸波器的吸收性能最好。图 7b是其它参量不变、结构参量k分别为0.01, 0.02, 0.03, 0.04时该吸波器的吸收曲线。k=0.01时,该吸波器存在两个吸收率较高的频点f1, f2分别位于2.77THz, 3.18THz, 其吸收率分别为93.0%和97.5%,吸收频带为2.70THz~3.36THz,相对带宽为21.8%;k=0.02时,f1, f2分别位于2.85THz, 3.29THz,其吸收率分别为91.0%和99.5%,吸收频带为3.11THz~3.50THz,相对带宽为11.8%;k=0.03时,f1, f2分别位于2.77THz, 3.30THz, 其吸收率分别为90.4%和99.9%,吸收频带为3.17THz~3.53THz, 相对带宽为10.7%;k=0.04时,f1, f2分别位于2.79THz, 3.37THz, 其吸收率分别为88.4%和100.0%,吸收频带为3.25THz~3.60THz, 相对带宽为10.2%。由此可见,随着k的逐渐增大,频率f1处的吸收率逐渐减小,频率f2处的吸收率逐渐增大,且f2的位置逐渐向高频移动,该吸波器的吸收频带位置逐渐向高频移动,相对带宽逐渐减小。所以,可以改变谐振单元的结构(如改变h4, k的值)调控该吸波器的吸收率和相对带宽,从而实现吸波器的动态调谐。

      Figure 7.  Absorption curves with different structure parameters h4 and k

      图 8中给出了高温状态下(T≥68℃)入射角度θ分别为0°,20°,40°,60°,80°时的吸收曲线。由图可知,入射角度的大小对吸波器的吸收影响很大,该吸波器的吸收曲线在入射角从0°增加到20°时吸收曲线略微下降,但总体变化不大,即该吸波器在入射角0°~20°有较好的吸收特性、角度稳定性。而入射角继续增大的过程中,该吸波器的吸收带宽逐渐减小,吸收效果逐渐变差。该吸波器大角度稳定性差是由于其结构不具有对称性造成的。

      Figure 8.  Absorption curves under different incident angles θ=0°, 20°, 40°, 60°, 80°

    • 作者设计了一款基于二氧化钒材料的可调谐吸波器,对该吸波器的吸收频谱、电场分布表面电流图、以及能量损耗图进行了分析,并讨论了其结构参量h4, k以及入射角度θ对该吸波器吸收频域和吸收带宽的影响。仿真结果表明,通过外部温控的方式可以获得可调谐的吸收频谱并改善吸波器的吸收性能,在外部温度T<68℃时,该吸波器可以实现多个单频点的吸收,在外部温度T≥68℃时,该吸波器可以实现在2.70THz到3.36THz的宽带吸收,相对带宽达到21.8%,其吸波机理主要是通过电谐振和磁谐振损耗电磁波能量。改变结构参量h4, k的值可以实现对该吸波器吸收频域和吸收带宽的动态操控。随着h4的增大,吸收频域逐渐向低频移动,吸收带宽先增大后减小,在h4=1.8μm时吸收带宽达到最大。随着k的增大,第一吸收峰f1处的吸收率逐渐减小,第二吸收峰f2处的吸收率逐渐增大,且位置逐渐向高频移动,吸收带宽逐渐减小,吸收频带逐渐向高频移动。随着θ的增大,吸收带宽逐渐减小,吸收性能逐渐变差。因此,该吸波器可以通过对外部温度的控制对吸收频谱的动态调谐,同时可以改变其结构参量优化其吸波性能。

参考文献 (26)

目录

    /

    返回文章
    返回