高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三谱线、高峰值功率窄线宽纳秒光纤激光器

李川 陈安涛 赵文娟 韩一平

引用本文:
Citation:

三谱线、高峰值功率窄线宽纳秒光纤激光器

    作者简介: 李川(1985-), 男, 博士研究生, 主要从事高功率光纤激光器、光纤放大器方面的研究.
    通讯作者: 韩一平, yphan@xidian.edu.cn
  • 中图分类号: TN248.1

Nanosecond fiber lasers with three narrow linewidths and high peak power

    Corresponding author: HAN Yiping, yphan@xidian.edu.cn
  • CLC number: TN248.1

  • 摘要: 为了抑制窄线宽脉冲光纤放大器中受激布里渊散射效应, 使用多谱线技术对单频种子源的线宽进行了拓展, 进行了基于三谱线的主振荡功率放大高峰值功率脉冲全光纤激光器实验验证。结果表明, 经过两级预放、一级功放, 获得激光输出的最大平均功率为303W, 脉宽为2.8ns, 重复频率为3.1MHz, 对应的峰值功率为35kW, 在最高功率输出情况下, 激光器的光束质量小于1.3;三谱线结构对受激布里渊散射有着明显的抑制作用。该研究为高峰值功率的脉冲光纤激光器放大技术提供了参考。
  • Figure 1.  Experimental device diagram of linearly polarized all-fiber laser with three narrow linewidths

    Figure 2.  a—linewidth of single seed laser b—linewidth of 3 seed lasers

    Figure 3.  Output pulse shape of fiber amplifier

    a—1 period b—5 periods

    Figure 4.  a—average output power vs. pump power of power amplifier b—output power and backward power in the case of single line and triple lines

    Figure 5.  Optical spectra of the amplifier at output power of 303W

    Figure 6.  Output beam quality and 2-D beam profile

  • [1]

    LEIGH M A, SHI W, ZONG J, et al. Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal[J]. IEEE Photonics Technology Letters, 2009, 21(1):27-29. doi: 10.1109/LPT.2008.2008195
    [2]

    CARLSON C G, DRAGIC P D, PRICE R K, et al. A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric doppler temperature lidar[J].IEEE Journal of Selected Topics in Quantum Electronics, 2015, 15(2):451-461. 
    [3]

    WU W D, REN T Q, ZHOU J, et al. Frequency doubling of narrow-linewidth pulsed fiber laser[J].Chinese Optics Letters, 2012, 10(5):23-25. 
    [4]

    SCHRÖDER T, LEMMERZ C, REITEBUCH O, et al. Frequency jitter and spectral width of an injection-seeded Q-switched Nd: YAG laser for a doppler wind lidar[J].Applied Physics, 2007, B87(3):437-447. 
    [5]

    LIU A, NORSEN M A, MEAD R D. 60W green output by frequency doubling of a polarized Yb-doped fiber laser[J]. Optics Letters, 2005, 30(1):67-69. 
    [6]

    YANG Q B, LIU Sh J, WANG Y T, et al. Super-hydrophobic micro-nano structures on aluminum surface induced by nanosecond laser [J].Laser & Optoelectronics Progress, 2017, 54(9): 091406(in Chinese). 
    [7]

    CHEN N, LIU Y X, DU S Zh, et al. Research progress in applications of nanosecond and femtosecond laser-induced breakdown spectroscopy [J].Laser & Optoelectronics Progress, 2016, 53(5): 050003(in Chinese). 
    [8]

    DENG H R, LI T, NIU R H, et al. Study on cladding light strippers in high power fiber lasers[J]. Laser Technology, 2013, 37(1): 63-67(in Chinese). 
    [9]

    HE X K, FENG L T, SHEN Q H et al. Experimental study about effect of stimulated Brillouin scattering in single frequency pulsed fiber amplifiers[J]. Laser Technology, 2012, 36(2):191-193(in Chinese). 
    [10]

    SHI W, PETERSEN E B, NGUYEN D T, et al. 220μJ monolithic single-frequency Q-switched fiber laser at 2μm by using highly Tm-doped germanate fibers[J].Optics letters, 2011, 36(18):3575-3577. doi: 10.1364/OL.36.003575
    [11]

    SHI W, PETERSEN E, FANG Q, et al. mJ-level 2μm transform-limited nanosecond pulses based on highly Tm-doped germanate fibers[C]//Fiber Laser Applications.Washington DC, USA: Optical Society of America, 2012: FTh4A.1.
    [12]

    RAN Y, SU R T, MA P F, et al. High power narrow-linewidth linearly polarized nanosecond all-fiber amplifier with near-diffraction-limited beam quality[J]. Journal of Optics, 2016, 18(1):015506. doi: 10.1088/2040-8978/18/1/015506
    [13]

    LI Ch, HAN Y P, ZHAO W J. 31kW Narrow-linewidth linearly polarized nanosecond all-polarization-maintaining fiber laser[J]. Chin-ese Journal of Lasers, 2018, 45(4):401015 (in Chinese). doi: 10.3788/CJL201845.0401015
    [14]

    SU R T, WANG X L, ZHOU P, et al. All-fiberized master oscillator power amplifier structured narrow-linewidth nanosecond pulsed laser with 505W average power[J].Laser Physics Letters, 2012, 10(1):015105. 
    [15]

    HUTCHINGS D C, ARNOLD J M. Polarization stability of solitons in birefringent optical fibers[J].Journal of the Optical Society of America, 1999, B16(16):513-518. 
    [16]

    ZOU F, WANG Z, WANG Z, et al. Gigahertz narrow-linewidth high-peak power nanosecond fiber laser[J]. Chinese Journal of Lasers, 2016, 43(7):0701001. doi: 10.3788/CJL201643.0701001
    [17]

    LI J X, LI B, ZHU G Zh, et al. Study on cladding light strippers in high power fiber lasers[J]. Laser Technology, 2017, 41(6):798-802(in Chinese). 
    [18]

    ALESHKINA S, KOCHERGINA T A, BOBKOV K K, et al. High-power 125-μm-optical-fiber cladding light stripper[C]//Lasers and Electro-Optics. New Yorks, USA: IEEE, 2016: JTu5A.106.
    [19]

    YIN L, YAN M, HAN Z, et al. High power cladding light stripper using segmented corrosion method: theoretical and experimental studies[J]. Optics Express, 2017, 25(8):8760-8776. doi: 10.1364/OE.25.008760
    [20]

    KLINER A, HOU K C, PLÖTNER M, et al. Fabrication and evaluation of a 500W cladding-light stripper[J]. Proceedings of the SPIE, 2013, 8616: 86160N. doi: 10.1117/12.2001984
  • [1] 刘晓娟魏功祥周柏君赵翔 . 1120nm窄线宽掺镱光纤激光器. 激光技术, 2016, 40(3): 349-352. doi: 10.7510/jgjs.issn.1001-3806.2016.03.010
    [2] 魏兴春欧攀张春熹贾豫东李大伟 . 单频单偏振窄线宽光纤激光器及其放大研究. 激光技术, 2010, 34(1): 5-7,29. doi: 10.3969/j.issn.1001-3806.2010.01.002
    [3] 张亮王智勇张辉尧舜曹银花左铁钏 . 基于受激布里渊散射的调Q光纤激光器研究. 激光技术, 2008, 32(1): 44-46,49.
    [4] 柯常军万重怡周锦文吴谨 . 高峰值功率脉冲氟化氢激光器. 激光技术, 2004, 28(5): 480-481,542.
    [5] 李玉文李斌王靖田魏艳玲曹思维 . 高效高峰值功率全固态355nm紫外激光器. 激光技术, 2010, 34(2): 265-267,271. doi: 10.3969/j.issn.1001-3806.2010.02.033
    [6] 江鹏飞赵伟瑞张静娟谢福增 . 窄线宽的外腔半导体激光器. 激光技术, 2004, 28(2): 160-161.
    [7] 曹三松王明秋韩凯 . 高峰值功率重频脉冲固体激光器. 激光技术, 1997, 21(5): 266-271.
    [8] 莫小凤史久林陈学岗何兴道刘娟 . 时域傅里叶变换的受激布里渊散射线宽测量. 激光技术, 2013, 37(5): 561-564. doi: 10.7510/jgjs.issn.1001-3806.2013.05.001
    [9] 哈斯乌力吉吕志伟何伟明王双义 . 受激布里渊散射的新介质. 激光技术, 2005, 29(3): 311-314.
    [10] 张聪余文峰夏珉杨春华 . 光纤受激布里渊散射的光信号特性分析. 激光技术, 2016, 40(3): 363-366. doi: 10.7510/jgjs.issn.1001-3806.2016.03.013
    [11] 吕百达邵怀宗林菊平代明 . 高功率二极管泵浦固体激光谐振腔的进展和分析. 激光技术, 1997, 21(6): 360-364.
    [12] 陈瑞涛顾华东郑陈琪杨杰吴先友 . 纳秒钬激光碎石系统设计. 激光技术, 2014, 38(4): 441-444. doi: 10.7510/jgjs.issn.1001-3806.2014.04.002
    [13] 李慧王志敏张丰丰王明强李家佳崔大复彭钦军许祖彦 . 全固态单频激光技术. 激光技术, 2016, 40(1): 141-147. doi: 10.7510/jgjs.issn.1001-3806.2016.01.031
    [14] 龚华平吕志伟林殿阳吕月兰 . 受激布里渊散射的空间光限幅效应的数值研究. 激光技术, 2006, 30(2): 136-137,141.
    [15] 哈斯乌力吉吕志伟何伟明杨珺王双义 . 介质化学结构对受激布里渊散射特性的影响. 激光技术, 2004, 28(6): 580-584.
    [16] 周雷宁继平陈王争韩群张伟毅王俊涛 . Er/Yb共掺光纤脉冲放大器中的受激布里渊散射. 激光技术, 2009, 33(5): 482-485. doi: 10.3969/j.issn.1001-3806.2009.05.010
    [17] 关莉珍王雨行刘嘉伟聂鹏程闫煜鹏宋锡策余先伦 . 耦合环辅助多模光纤受激布里渊散射阈值分析. 激光技术, 2024, 48(1): 60-64. doi: 10.7510/jgjs.issn.1001-3806.2024.01.010
    [18] 龙江雄李刚杨彬姚红权丁建永周军 . 种子注入的高峰值功率全固态单频激光器. 激光技术, 2019, 43(3): 291-294. doi: 10.7510/jgjs.issn.1001-3806.2019.03.001
    [19] 董永康吕志伟吕月兰何伟明 . 布里渊光纤环形激光器及其应用. 激光技术, 2004, 28(5): 498-502.
    [20] 朱志坚薛竣文王玉珂孙鲁苏秉华 . 基于MOPA结构的1064nm单频光纤激光器. 激光技术, 2019, 43(6): 800-803. doi: 10.7510/jgjs.issn.1001-3806.2019.06.013
  • 加载中
图(6)
计量
  • 文章访问数:  6922
  • HTML全文浏览量:  5512
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-16
  • 录用日期:  2019-02-26
  • 刊出日期:  2019-11-25

三谱线、高峰值功率窄线宽纳秒光纤激光器

    通讯作者: 韩一平, yphan@xidian.edu.cn
    作者简介: 李川(1985-), 男, 博士研究生, 主要从事高功率光纤激光器、光纤放大器方面的研究
  • 西安电子科技大学 物理与光电工程学院, 西安 710071

摘要: 为了抑制窄线宽脉冲光纤放大器中受激布里渊散射效应, 使用多谱线技术对单频种子源的线宽进行了拓展, 进行了基于三谱线的主振荡功率放大高峰值功率脉冲全光纤激光器实验验证。结果表明, 经过两级预放、一级功放, 获得激光输出的最大平均功率为303W, 脉宽为2.8ns, 重复频率为3.1MHz, 对应的峰值功率为35kW, 在最高功率输出情况下, 激光器的光束质量小于1.3;三谱线结构对受激布里渊散射有着明显的抑制作用。该研究为高峰值功率的脉冲光纤激光器放大技术提供了参考。

English Abstract

    • 高峰值功率纳秒级窄线宽光纤激光器在远距离雷达探测、材料加工、非线性频率变换等方面有着诸多的应用和关注[1-8]。种子源直接电调制与电光/声光外调制是目前主要的技术手段。种子源直接电调制技术是利用高速的驱动电路控制种子源的通断,使种子源激光器产生脉冲光,其调制原理简单、易于实现,特别适合于半导体激光器的调制。如果要实现短脉冲输出,在时域上种子源激光器开关过程中会存在一定的上升沿和下降沿,在调制后的光谱上会出现边模,影响种子源信号光谱的窄线宽特性。放大后的种子信号无法满足如周期极化铌酸锂(periodically poled lithium niobate, PPLN)非线性频率变换、远距离相干探测等应用需求。电光/声光外调制技术,种子源激光器连续出光,通过电光/声光器件进行脉冲斩波,对种子信号的频谱特性不会产生影响,很好地保持了原始种子光的线宽,特别适合对线宽要求较高的应用领域,但会损失部分种子光能量,同时成本较高,结构复杂。

      而窄线宽的种子源信号在功率放大过程中往往会受到受激布里渊散射(stimulated Brillouin scattering,SBS)、受激喇曼散射(stimulated Raman scattering,SRS)等非线性效应的影响,其中SBS效应是影响功率提升最大的障碍[9]。目前多家研究机构已经报道了不同的方法来提升SBS效应在窄线宽脉冲激光放大器中的阈值,如采用重掺杂光纤缩短增益光纤的长度[10-11],压缩脉冲宽度提高SBS的阈值[12-13],采用更粗芯径的大模场光纤或光子晶体光纤,种子光采用相位和强度同时调制等。上述方法均在抑制SBS、获得高峰值功率脉冲输出方面取得了一定成果[14-16]

      为进一步突破现有技术对SBS抑制的瓶颈,本文中提出了一种采用三谱线单频种子源合成后外调制的方法,经过谱线的优化,实现了35kW峰值功率的输出。

    • 实验装置如图 1所示。3台连续波种子源经3×1合束器合束,通过一个电光调制器(electro-optic modulator,EOM)将合成后的连续种子光信号脉冲化,脉冲信号通过3级主振荡功率放大(master oscillator power amplifier,MOPA)结构逐级进行放大。3台种子源激光器的线宽均为10kHz,中心波长分别设置为1063.971nm, 1063.979nm, 1063.986nm,因EOM所能承受的最大功率为100mW,每台种子源激光器的输出被设置为30mW。任意波形发生器(arbitrary function generator,AFG)产生调制信号,经射频放大器放大后驱动EOM控制种子光信号的关断,输出的脉冲信号光经Tap耦合器耦出约1%输入到偏压控制器中,用于精确锁定EOM的马赫-曾德尔调制器工作点,减少种子光直流分量成分。其中,信号的脉冲宽度和重复频率分别设置为2.8ns和3.1MHz,占空比为8.7‰,输出的脉冲种子的平均功率为385.8μW。EOM采用Photoline的电光强度调制器,开关消光比大于25dB。调制器型号:NIR-MX-LN-10,输入/输出光纤类型PM980-XP。为了尽可能提高预放级的增益,第1级预放使用保偏(polarization-maintaining,PM)环形器,与波分复用器(wavelength division multiplexing,WDM)、单模激光二极管(laser diode,LD)、反射镜(reflective mi-rror,RM)、单模保偏增益光纤(Nufern PM-YSF-HI)依次连接形成了一个双程放大的结构,使其具有较高的增益水平。同时,环形器本身具备较好的反向隔离度(大于45dB),可以保护种子级器件,经过第1级放大后,输出的平均功率被放大到约110mW。第1级预放后通过一个带宽2nm的窄带滤波,用于过滤高增益信号放大过程中产生的放大自发辐射(amplified spontaneous emission,ASE)。第2级预放采用高掺杂保偏掺镱光纤(Nufern PLMA-YDF-10-125-HI-8),尺寸规格为10μm/125μm,吸收系数为6dB/m@976nm,光纤长度为2.2m。抽运源则选用锁波长976nm LD,数值孔径(numerical aperture,NA)为0.15,功率为9W。经过第2级放大后,其输出的平均功率被放大到5W。在2级放大和3级放大之间,隔离器(isolator,ISO)和耦合器(或环形器)实现反向光的有效隔离与监控回光,避免因非线性SBS现象出现强烈的回光,导致激光器损坏,从而达到保护前级器件的目的。通过对PLMA-GDF-25/250光纤进行拉锥,减小模场直径,与PLMA-GDF-10/125的光纤进行模场匹配实现低损耗熔接,提高了进入三级放大器的信号光光束质量。3级放大同样采用双包层放大,结构采用反向抽运,有效缩短光纤长度,提高SBS效应阈值,同时增加放大器的光光转换效率。增益光纤采用Nufern PLMA-YDF-25/250-M,吸收5.1dB/m @976nm,长度为2.2m。增益光纤的盘绕的半径约为5cm,用于滤除光纤放大过程中产生的高阶模,提高放大器的光束质量。输出采用准直隔离或8°角的方式,避免因端面菲涅耳反射引起的放大器回光放大,损坏前级光路。考虑到提高非线性效应的阈值,3级放大采用6个标定功率为60W的976nm锁波长抽运源,与之匹配的(6+1)×1反向合束器的光纤为105μm/125μm,数值孔径为0.22,信号的输入端光纤和输出端光纤的规格均为25μm/250μm, 利用机械微加工的方式在模场匹配器输出的无源光纤上制作了一个包层光剥离器,用于剥离光纤包层中残余抽运光[17-20]

      Figure 1.  Experimental device diagram of linearly polarized all-fiber laser with three narrow linewidths

    • 为抑制窄线宽光纤激光器在功率放大过程中所产生的SBS效应,设置3套种子源用于拓展线宽,使合成后谱线宽度达到一个比较宽的值,单个谱线实际宽度依旧保持窄线宽状态。其中,图 2a为1台种子源经10GHz自由光谱区法布里-珀罗(F-P)标准具测试图,图 2b为3台种子源合成后经10GHz自由光谱区F-P标准具测试图,3条谱线合成后频谱宽度约为4.06GHz。

      Figure 2.  a—linewidth of single seed laser b—linewidth of 3 seed lasers

      利用Thorlabs公司的硅基高速探测器采集电光强度调制器调制后的脉冲信号,如图 3所示,脉冲宽度为2.8ns,重复频率为3.1MHz。

      Figure 3.  Output pulse shape of fiber amplifier

      图 4a所示,放大器的输出功率与抽运源功率曲线呈线性增长,其光光转换效率为81.6%,功率的进一步提升受限于抽运功率(370W)。监测的反向光始终维持在微瓦量级的功率水平。与之形成鲜明对比的是,若采用单台种子源进行功率放大,峰值功率约30kW时已出现非线性的增长[13],如图 4b所示,可认为三谱线种子源使得SBS效应得到了良好的抑制。

      Figure 4.  a—average output power vs. pump power of power amplifier b—output power and backward power in the case of single line and triple lines

      在脉冲放大过程中,放大级光纤的ASE和自激荡,将会引起脉冲能量的损失,导致光光转换效率的降低。通过优化光路结构,选择合适的有源光纤类型和长度,抑制了放大过程中ASE的产生,得到了具有很高信噪比(57dB)的脉冲激光输出,并且SRS效应并没有发生,如图 5所示。系统配置的偏压控制器通过给强度调制器直流电极加合适的直流偏压让强度调制器工作在合适的工作点,种子激光经EOM斩波后的直流分量消光比被提高到了35dB,因非线性效应产生的离散频率分量被有效地抑制[13]

      Figure 5.  Optical spectra of the amplifier at output power of 303W

      利用SP620探测器(Spiricon)以及光束分析软件(BeamGage)对输出的光斑和光束质量进行了测量,光束质量因子M2x, y方向分别为1.27和1.28,如图 6所示。

      Figure 6.  Output beam quality and 2-D beam profile

    • 报道了一种采用多谱线结构的窄线宽、高峰值功率的线偏振全光纤激光器。采用典型的MOPA结构,调制后的三谱线种子信号光经过3级放大,实现303W平均功率、35kW高峰值功率、3.1MHz重复频率的脉冲激光输出,输出的光束质量近衍射极限。高功率放大过程的ASE和非线性效应诸如SBS, SRS均得到了较好的抑制。功率进一步的提升受限于抽运功率。该激光器可广泛应用于在雷达探测、激光频率变频等领域。

参考文献 (20)

目录

    /

    返回文章
    返回