[1] 伍锡山, 张鹏, 刘彬, 等. 固体自喇曼黄光激光器研究进展[J]. 激光技术, 2018, 42(5): 673-680.WU X Sh, ZHANG P, LIU B, et al. Research progress of solid-state self-Raman yellow lasers[J]. Laser Technology, 2018, 42(5): 673-680 (in Chinese).
[2] CHEN Y F. Efficient 1521-nm Nd ∶GdVO4 Raman laser[J]. Optics Letters, 2004, 29(22): 2632-2634. doi: 10.1364/OL.29.002632
[3] GAO F L, ZHANG X Y, CONG Zh H, et al. Tunable Stokes laser based on the cascaded stimulated polariton scattering and stimulated Raman scattering in RbTiOPO4 crystal[J]. Optics Letters, 2020, 45(4): 861-864. doi: 10.1364/OL.383885
[4] ZHU H Y, DUAN Y M, ZHANG G, et al. Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd ∶YVO4 composite[J]. Optics Letters, 2009, 34(18): 2763-2765. doi: 10.1364/OL.34.002763
[5] 苏富芳, 吴福全, 郝殿中, 等. LD抽运被动调Q Nd ∶YAG/GdVO4内腔式喇曼激光器[J]. 激光技术, 2011, 35(3): 398-402.SU F F, WU F Q, HAO D Zh, et al. LD pumped passively Q-switched Nd ∶YAG/GdVO4 intracavity Raman laser[J]. Laser Technology, 2011, 35(3): 398-402 (in Chinese).
[6] WANG C, CONG Zh H, QIN Z G, et al. LD-side-pumped Nd ∶YAG/BaWO4 intracavity Raman laser for anti-Stokes generation[J]. Optics Communications, 2014, 322: 44-47. doi: 10.1016/j.optcom.2014.02.008
[7] ZHANG H J, LI P, WANG Q P, et al. High-power dual-wavelength eye-safe ceramic Nd ∶YAG/SrWO4 Raman laser operating at 1501 and 1526 nm[J]. Applied Optics, 2014, 53(31): 7189-7194. doi: 10.1364/AO.53.007189
[8] LI L, ZHANG X Y, LIU Zh J, et al. A high power diode-side-pumped Nd ∶YAG/BaWO4 Raman laser at 1103 nm[J]. Laser Physics, 2013, 23(4): 045402. doi: 10.1088/1054-660X/23/4/045402
[9] LIN J, PASK H M. Cascaded self-Raman lasers based on 382 cm-1 shift in Nd ∶GdVO4[J]. Optics Express, 2012, 20(14): 15180-15185. doi: 10.1364/OE.20.015180
[10] BAI F, JIAO Zh Y, XU X F, et al. High power Stokes generation based on a secondary Raman shift of 259 cm-1 of Nd ∶YVO4 self-Raman crystal[J]. Optics & Laser Technology, 2019, 109: 55-60.
[11] SHARMA U, KIM C S, KANG J U. Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications[J]. IEEE Photonics Technology Letters, 2004, 16(5): 1277-1279. doi: 10.1109/LPT.2004.825991
[12] AKBARI R, ZHAO H T, MAJOR A. High-power continuous-wave dual-wavelength operation of a diode-pumped Yb ∶KGW laser[J]. Optics Letters, 2016, 41(7): 1601-1604. doi: 10.1364/OL.41.001601
[13] 邓迁, 吴德成, 况志强, 等. 用于水汽混合比自标定的532 nm/660 nm双波长激光雷达[J]. 红外与激光工程, 2018, 47(12): 1230004.DENG Q, WU D Ch, KUANG Zh Q, et al. 532 nm/660 nm dual wavelength lidar for self-calibration of water vapor mixing ratio[J]. Infrared and Laser Engineering, 2018, 47(12): 1230004 (in Chinese).
[14] HUANG Y J, CHEN Y F, CHEN W D, et al. Dual-wavelength eye-safe Nd ∶YAP Raman laser[J]. Optics Letters, 2015, 40(15): 3560-3563. doi: 10.1364/OL.40.003560
[15] XIE Z, LOU S H, DUAN Y M, et al. Passively Q-switched KTA cascaded Raman laser with 234 and 671 cm-1 shifts[J]. Applied Sciences, 2021, 11(15): 6895. doi: 10.3390/app11156895
[16] CHE X H, XU J, LI H D, et al. Analysis of actively Q-switched infrared Raman lasers with crystalline media of multi-Raman-modes[J]. Infrared Physics & Technology, 2020, 111: 103474.
[17] 徐杰, 车潇华, 李恒达, 等. 基于次级喇曼模的固体激光器的数值模拟研究[J]. 中国激光, 2020, 47(5): 0501001.XU J, CHE X H, LI H D, et al. Numerical simulation of solid-state lasers based on secondary Raman modes[J]. Chinese Journal of Lasers, 2020, 47(5): 0501001 (in Chinese).
[18] LV X L, CHEN J C, PENG Y J, et al. Investigation of high-energy extracavity Raman laser oscillator and single-pass Raman generator based on potassium gadolinium tungstate (KGW) crystal[J]. Optics & Laser Technology, 2021, 140: 107023.
[19] FRANK M, SMETANIN S N, JELINEK M, et al. Efficient synchronously-pumped all-solid-state Raman laser at 1178 and 1227 nm on stretching and bending anionic group vibrations in a SrWO4 crystal with pulse shortening down to 1.4 ps[J]. Optics & Laser Technology, 2019, 119: 105660.
[20] DASHKEVICH V I, RUSAK A A, ORLOVICH V A, et al. Eye-safe extracavity Raman laser: A passive way of eliminating optical feedback with double-pass pumping[J]. Journal of Applied Spectroscopy, 2017, 83(6): 945-950. doi: 10.1007/s10812-017-0388-4
[21] SMETANIN S N, DOROSHENKO M E, IVLEVA L I, et al. Low-threshold parametric Raman generation of high-order Raman components in crystals[J]. Applied Physics, 2014, B117(1): 225-234.
[22] BOYD R. Nonlinear optics[M]. 3rd ed. New York, USA: Academic Press, 2008: 473-488.
[23] PENZKOFER A, LAUBEREAU A, KAISER W. High intensity Raman interactions[J]. Progress in Quantum Electronics, 1979, 6(2): 55-140. doi: 10.1016/0079-6727(79)90011-9