[1] FRANSON J D. Nonlocal cancellation of dispersion[J]. Physical Review, 1992, A45(5): 3126-3132.
[2] CHEN Zh, HAN Y J. Quantum nonlocality, quantum entanglement and new physics[J]. Chinese Science Bulletin, 2016, 61(10): 1072-1074.   doi: 10.1360/N972016-00123
[3] BAEK S Y, CHO Y W, KIM Y H. Nonlocal dispersion cancellation using entangled photons[J]. Optics Express, 2009, 17(21): 19241-19252. doi: 10.1364/OE.17.019241
[4] FRANSON J D. Nonclassical nature of dispersion cancellation and nonlocal interferometry[J]. Physical Review, 2009, A80(3): 032119.
[5] BRENDEL J, ZBINDEN H, GISIN N. Measurement of chromatic dispersion in optical fibers using pairs of correlated photons[J]. Optics Communications, 1998, 151(1/3): 35-39.
[6] JARAMILLO-VILLEGAS J A, IMANY P, ODELE O D, et al. Persistent energy-time entanglement covering multiple resonances of an on-chip biphoton frequency comb[J]. Optica, 2017, 4(6): 655-658. doi: 10.1364/OPTICA.4.000655
[7] LI B H, HOU F Y, QUAN R A, et al. Nonlocality test of energy-time entanglement via nonlocal dispersion cancellation with nonlocal detection[J]. Physical Review, 2019, A100(5): 053803.
[8] O'DONNELL K A. Observations of dispersion cancellation of entangled photon pairs[J]. Physical Review Letters, 2011, 106(6): 063601. doi: 10.1103/PhysRevLett.106.063601
[9] LUKENS J M, DEZFOOLIYAN A, LANGROCK C, et al. Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator[J]. Physical Review Letters, 2013, 111(19): 193603. doi: 10.1103/PhysRevLett.111.193603
[10] PREVEDEL R, SCHREITER K M, LAVOIE J, et al. Classical a-nalog for dispersion cancellation of entangled photons with local detection[J]. Physical Review, 2011, A84(5): 051803.
[11] MAcLEAN J P W, DONOHUE J M, RESCH K J. Direct characte-rization of ultrafast energy-time entangled photon pairs[J]. Physical Review Letters, 2018, 120(5): 053601. doi: 10.1103/PhysRevLett.120.053601
[12] KALTENBAEK R, LAVOIE J, BIGGERSTAFF D N, et al. Quantum-inspired interferometry with chirped laser pulses[J]. Nature Physics, 2008, 4(11): 864-868. doi: 10.1038/nphys1093
[13] KALTENBAEK R, LAVOIE J, RESCH K J. Classical analogues of two-photon quantum interference[J]. Physical Review Letters, 2009, 102(24): 243601. doi: 10.1103/PhysRevLett.102.243601
[14] LAVOIE J, KALTENBAEK R, RESCH K J. Quantum-optical coherence tomography with classical light[J]. Optics Express, 2009, 17(5): 3818-3826. doi: 10.1364/OE.17.003818
[15] WASAK T, SZAN'KOWSKI P, WASILEWSKI W, et al. Entanglement-based signature of nonlocal dispersion cancellation[J]. Physical Review, 2010, A82(5): 052120.
[16] FRANSON J D. Bell inequality for position and time[J]. Physical Review Letters, 1989, 62(19): 2205-2208. doi: 10.1103/PhysRevLett.62.2205
[17] FITCH M J, FRANSON J D. Dispersion cancellation and nonclassical noise reduction for large-photon-number states[J]. Physical Review, 2002, A65(5): 053809.
[18] GIOVANNETTI V, LLOYD S, MAcCONE L, et al. Clock synchronization with dispersion cancellation[J]. Physical Review Letters, 2001, 87(11): 117902. doi: 10.1103/PhysRevLett.87.117902
[19] GIOVANNETTI V, LLOYD S, MAcCONE L. Quantum-enhanced measurements: Beating the standard quantum limit[J]. Science, 2004, 306(5700): 1330-1336. doi: 10.1126/science.1104149
[20] VALENCIA A, SCARCELLI G, SHIH Y. Distant clock synchronization using entangled photon pairs[J]. Physical Review Letters, 2004, 85(13): 2655-2657.
[21] HOU F Y, QUAN R A, DONG R F, et al. Fiber-optic two-way quantum time transfer with frequency-entangled pulses[J]. Physical Review, 2019, A100(2): 023849.
[22] MOWER J, ZHANG Z, DESJARDINS P, et al. High-dimensional quantum key distribution using dispersive optics[J]. Physical Review, 2013, A87(6): 062322.
[23] LEE C, ZHANG Zh Sh, STEINBRECHER G R, et al. Entanglement-based quantum communication secured by nonlocal dispersion cancellation[J]. Physical Review, 2014, A90(6): 062331.
[24] LIU X, YAO X, WANG H Q, et al. Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20km[J]. Applied Physics Letters, 2019, 114(14): 141104. doi: 10.1063/1.5089784
[25] HU X L, ZHONG T, WONG F N C, et al. Nonlocal cancellation of multi-frequency-channel dispersion[J]. Physical Review, 2015, A91(1): 013809.
[26] QUAN R A, DONG R F, XIANG X, et al. High-precision nonlocal temporal correlation identification of entangled photon pairs for quantum clock synchronization[J]. Review of Scientific Instruments, 2020, 91(12): 123109. doi: 10.1063/5.0031166
[27] YAO X, LIU X, YOU L X, et al. Quantum secure ghost imaging[J]. Physical Review, 2018, A98(6): 063816.
[28] XIANG X, DONG R F, LI B H, et al. Quantification of nonlocal dispersion cancellation for finite frequency entanglement[J]. Optics Express, 2020, 28(12): 17697-17707. doi: 10.1364/OE.390149
[29] QUAN R A, WANG M M, HOU F Y, et al. Characterization of frequency entanglement under extended phase-matching conditions[J]. Applied Physics, 2015, B118(3): 431-437.
[30] HOU F Y, XIANG X, QUAN R A, et al. An efficient source of frequency anti-correlated entanglement at telecom wavelength[J]. Applied Physics, 2016, B122(5): 128-136.
[31] JIN R B, SHIMIZU R, WAKUI K, et al. Widely tunable single photon source with high purity at telecom wavelength[J]. Optics Express, 2013, 21(9): 10659-10666. doi: 10.1364/OE.21.010659
[32] JIN R B, ZHAO P, DENG P G, et al. Spectrally pure states at telecommunications wavelengths from periodically poled MTiOXO4 (M= K, Rb, Cs; X= P, As) crystals[J]. Physical Review Applied, 2016, 6(6): 064017. doi: 10.1103/PhysRevApplied.6.064017
[33] NODURFT I C, SHRINGARPURE S U, KIRBY B T, et al. Nonlocal dispersion cancellation for three or more photons[J]. Physical Review, 2020, A102(1): 013713.
[34] ZHONG T, WONG F N C. Nonlocal cancellation of dispersion in Franson interferometry[J]. Physical Review, 2013, A88(2): 020103.
[35] ZHONG T, WONG F N C, RESTELLI A, et al. Efficient single-spatial-mode periodically-poled KTiOPO4 waveguide source for high-dimensional entanglement-based quantum key distribution[J]. Optics Express, 2012, 20(24): 26868-26877. doi: 10.1364/OE.20.026868
[36] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046. doi: 10.1103/PhysRevLett.59.2044
[37] STEINBERG A M, KWIAT P G, CHIAO R Y. Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer[J]. Physical Review, 1992, A45(9): 6659-6665.
[38] NASR M B, SALEH B E A, SERGIENKO A V, et al. Demonstration of dispersion-canceled quantum-optical coherence tomography[J]. Physical Review Letters, 2003, 91(8): 083601. doi: 10.1103/PhysRevLett.91.083601
[39] MINAEVA O, BONATO C, SALEH B E A, et al. Odd- and even-order dispersion cancellation in quantum interferometry[J]. Physical Review Letters, 2009, 102(10): 100504. doi: 10.1103/PhysRevLett.102.100504
[40] QIU J, PAN J S, XIANG G Y, et al. Even- and odd-order dispersion cancellation effects in a two-photon interferometer[J]. Journal of the Optical Society of America, 2015, B32(5): 907-911.
[41] QIU J, XIANG G Y, ZHANG Y Sh, et al. Even- and odd-order dispersion cancellation effects in four-photon quantum interferometry[J]. Chinese Optics Letters, 2014, 12(11): 112701. doi: 10.3788/COL201412.112701
[42] IM D G, KIM Y, KIM Y H. Dispersion cancellation in a quantum interferometer with independent single photons[J]. Optics Express, 2021, 29(2): 2348-2363. doi: 10.1364/OE.415610
[43] FAN Y R, YUAN Ch Zh, ZHANG R M, et al. Effect of dispersion on indistinguishability between single-photon wave-packets[J]. Photonics Research, 2021, 9(6): 1134-1143. doi: 10.1364/PRJ.421180
[44] BLACK A N, GIESE E, BRAVERMAN B, et al. Quantum nonlocal aberration cancellation[J]. Physical Review Letters, 2019, 123(14): 143603. doi: 10.1103/PhysRevLett.123.143603
[45] BONATO C, SERGIENKO A V, SALEH B E A, et al. Even-order aberration cancellation in quantum interferometry[J]. Physical Review Letters, 2008, 101(23): 233603. doi: 10.1103/PhysRevLett.101.233603
[46] SHTAIF M, ANTONELLI C, BRODSKY M. Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons[J]. Optics Express, 2011, 19(3): 1728-1733. doi: 10.1364/OE.19.001728
[47] MAZUREK M D, SCHREITER K M, PREVEDEL R, et al. Dispersion-cancelled biological imaging with quantum-inspired interferometry[J]. Scientific Reports, 2013, 3(1): 1-5.
[48] LIU X, YAO X, XUE R, et al. An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution[J]. APL Photonics, 2020, 5(7): 076104. doi: 10.1063/5.0002595
[49] LIU J Y, LIU X, ZHANG W, et al. The impact of fiber dispersion on the performance of entanglement-based dispersive optics quantum key distribution[J]. Journal of Electronic Science and Technology, 2021, 19(4): 100119. doi: 10.1016/j.jnlest.2021.100119