[1] MILLER W S, ZHUANG L, BOTTEMA J, et al. Recent development in aluminum alloys for the automotive industry[J]. Materials Science and Engineering, 2000, A280(1):37-49.
[2] LI J. Research on steel-aluminum thin plate joint with laser welding[J]. Welding Technology,2006, 35(4):25-27(in Chinese).
[3] RATHOD M J, KUTSUNA M. Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding[J]. Welding Journal,2004,83(1):16-26.
[4] ZHANG M J. CHEN G Y, LI Sh Ch, et al.Experimental investigation on fiber laser overlap welding of automotive aluminum to galvanized steel[J]. Chinese Journal of Lasers, 2011, 38(6):1-6(in Chinese).
[5] CAO R, YU S L. Numerical simulation of temperature field of GMT welding for jointing dissimilar metals of aluminum to steel[J]. Journal of Lanzhou University of Technology,2013,39(5):19-22(in Chinese).
[6] FENG X S, CHEN S H, LI L Q, et al. Temperature distribution of AL/Ti dissimilar alloys joint in laser welding brazing[J]. Transaction of China Welding Institution, 2009, 30(10):9-12(in Chinese).
[7] IORDACHESCU M, IORDACHESCU D, SCUTELRTICU E, et al. Influence of heating source position and dilution rate in achieving overmatched dissimilar welded join[J]. Science and Technology of Welding and Joining, 2010, 15(5):378-385.
[8] CHEN G Y, WU K R, LIAO Sh H, et al. Effect of V-shaped grooves on properties of laser welding-brazed steel-aluminum butt joints[J]. Laser Technology, 2014, 38(1):11-16(inChinese).
[9] SONG Y,ZHANG X Ch,HAO X H,et al.Numerical simulation of temperature and flow fields of TIG welding brazing of aluminum/steel[J].Welding Joining,2014(7):32-36(in Chinese).
[10] ZHAO S, YU G, HE X, et al. Numerical simulation and experimental investigation of laser overlap welding of Ti6A14V and 42CrMo[J]. Journal of Materials Processing Technology,2011, 211(3):530-537(in Chinese).
[11] RAMANAN N, KORPELA S A. Fluid dynamics of a stationary weld pool[J]. Metallurgical Transactions, 1990, A21(1):45-57.