[1] LI L J. Current laser processing and equipment[M]. Beijing:Beijing Institute of Technology Press, 1993:26-30(in Chinese).
[2] WALTER W D. Laser welding[M]. New York, USA:Wiley, 1999:120-125.
[3] WANG J Ch. Development and expectation of laser welding technology[J]. Laser Technology, 2001, 25(1):48-54(in Chinese).
[4] GAO Sh Y, YANG Y Q, YANG K Zh. Defect detection of laser welding seam of unequal-thickness blank based on structured light vision[J]. Laser Technology, 2011, 35(4):440-443(in Chinese).
[5] CHEN G Y, LI Ch Z, ZHOU C, et al. Partial penetration welding of 5A06 aluminum alloy with high power fiber laser[J]. Laser Technology, 2015, 39(2):170-175(in Chinese).
[6] GAO J Q, QIN G L, YANG J L, et al. Image processing of weld pool and keyhole in Nd:YAG laser welding of stainless steel based on visual sensing[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(2):423-428. doi: 10.1016/S1003-6326(11)60731-0
[7] SHAO J, YAN Y. Review of techniques for on-line monitoring and inspection of laser welding[J].Journal of Physics:Conference Series, 2005, 15(1):101-107.
[8] ZHANG Y, ZHANG C, TAN L, et al. Coaxial monitoring of the fibre laser lap welding of Zn-coated steel sheets using an auxiliary illuminant[J]. Optics & Laser Technology, 2013, 50(2):167-175.
[9] TENNER F, BROCK C, KLÄMPFL F, et al. Analysis of the correlation between plasma plume and keyhole behavior in laser metal welding for the modeling of the keyhole geometry[J]. Optics and Lasers in Engineering, 2015, 64(12):32-41.
[10] GAO X, ZHANG Y. Monitoring of welding status by molten pool morphology during high-power disk laser welding[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19):1797-1802. doi: 10.1016/j.ijleo.2015.04.060
[11] LUO M, SHIN Y C. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding[J]. Optics and Lasers in Engineering, 2015, 64(12):59-70.
[12] KIM J, OH S, KI H. A study of keyhole geometry in laser welding of zinc-coated and uncoated steels using a coaxial observation method[J]. Journal of Materials Processing Technology, 2015, 225:451-462. doi: 10.1016/j.jmatprotec.2015.06.029
[13] OEZMERT A, DRENKER A, NAZERY V. Detectability of penetration based on weld pool geometry and process emission spectrum in laser welding of copper[J]. Physics Procedia, 2013, 41:509-514. doi: 10.1016/j.phpro.2013.03.108
[14] REGAARD B, FIEDLER W, KAIERLE S. Error detection in lap welding applications using on-line melt pool contour analysis by coaxial process monitoring with external illumination[J]. Physics Procedia, 2007, 41:471-475.
[15] KIM C H, AHN D C. Coaxial monitoring of keyhole during Yb:YAG laser welding[J]. Optics & Laser Technology, 2012, 44(6):1874-1880.
[16] PANG S, HIRANO K, FABBRO R, et al. Explanation of penetration depth variation during laser welding under variable ambient pressure[J]. Journal of Laser Applications, 2015, 27(2):022007. doi: 10.2351/1.4913455