[1] MIZIOLEK A W, PALLESCHI V, SCHECHTER I, et al. Laser-induced breakdown spectroscopy(LIBS):fundamentals and applications[M]. New York, USA:Cambridge University Press, 2006:1-90.
[2] THAKUR S N, SINGH J P. Fundamentals of laser induced breakdown spectroscopy[M].New York, USA:IEEE, 2007:3-21.
[3] CREMERS D A, RADZIEMSKI L J. Handbook of laser-induced breakdown spectroscopy[M]. Chichester, UK:John Wiley & Sons Inc., 2006:1-50.
[4] CYEMERS D A, RADZIEMSKI L J. Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 1983, 55(8):1252-1256. doi: 10.1021/ac00259a017
[5] RADZIEMSKI L J, LOREE T R, CYEMERS D A, et al. Time-resolved laser-induced breakdown spectrometry of aerosols[J]. Analytical Chemistry, 1983, 55(8):1246-1252. doi: 10.1021/ac00259a016
[6] MA C H, CUI J L. Quantitative analysis of composition in molten steel by LIBS based on improved partial least squares[J]. Laser Technology, 2016, 40(6):876-881(in Chinese).
[7] WANG Y, ZHAO N J, MA M J, et al. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy[J]. Laser Technology, 2013, 37(6):808-811(in Chinese).
[8] ZHU Y Q, ZHONG X, HE Y, et al. Measurement of alkali content in Zhundong coal after chemical fractionation treatment by LIBS method[J]. Laser Technology, 2016, 41(1):101-105(in Chinese).
[9] SATTMANN R, MONCH I, KRAUSE H, et al. Laser-induced breakdown spectroscopy for polymer identification[J]. Applied Spectroscopy, 1998, 52(3):456-461. doi: 10.1366/0003702981943680
[10] ARGON C, AGUILERA J A, PENALBA F. Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser[J]. Applied Spectroscopy, 1999, 53(10):1259-1267. doi: 10.1366/0003702991945506
[11] KOTZAGIANNI M, COURIS S. Femtosecond laser induced breakdown for combustion diagnostics[J]. Applied Physics Letters, 2012, 100(26):264104. doi: 10.1063/1.4731781
[12] COURIS S, KOTZAGIANNI M, BASKEVICIUS A, et al. Combustion diagnostics with femtosecond laser radiation[J]. Journal of Physics:Conference Series, 2014, 548(1):012056.
[13] LEE T W, HEGDE N. Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature[J]. Combustion and Flame, 2005, 142(3):314-316. doi: 10.1016/j.combustflame.2005.05.003
[14] van EYK P J, ASHMAN P J, ALWAHABI Z T, et al. Simultaneous measurements of the release of atomic sodium, particle diameter and particle temperature for a single burning coal particle[J]. Proceedings of the Combustion Institute, 2009, 32(2):2099-2106. doi: 10.1016/j.proci.2008.07.038
[15] SAW W L, NATHAN G J, ASHMAN P J, et al. Assessment of the release of atomic Na from a burning black liquor droplet using quantitative PLIF[J]. Combustion and Flame, 2009, 156(7):1471-1479. doi: 10.1016/j.combustflame.2009.03.012
[16] BENNETT B A V, MCENALLY C S, PFEFFERLE L D, et al. Computational and experimental study of axisymmetric coflow partially premixed methane/air flames[J]. Combustion and Flame, 2000, 123(4):522-546. doi: 10.1016/S0010-2180(00)00158-9
[17] PHUOC T X, WHITE F P. Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture[J]. Fuel, 2002, 81(13):1761-1765. doi: 10.1016/S0016-2361(02)00105-9
[18] MICHALAKOU A, STAVROPOULOS P, COURIS S. Laser-induced breakdown spectroscopy in reactive flows of hydrocarbon-air mixtures[J]. Applied Physics Letters, 2008, 92(8):081501. doi: 10.1063/1.2839378
[19] KIEFER J, TROGER J W, LI Z S, et al. Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics[J]. Applied Physics, 2011, B103(1):229-236.
[20] MANSOUR M S, IMAM H, ELSAYED K A, et al. Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2009, B64(10):1079-1084.
[21] FERIOLI F, BUCKLEYS G. Measurements of hydrocarbons using laser-induced breakdown spectroscopy[J]. Combustion and Flame, 2006, 144(3):435-447. doi: 10.1016/j.combustflame.2005.08.005
[22] FERIOLI F, BUCKLEY S G, PUZINAUSKAS P V. Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy[J]. International Journal of Engine Research, 2006, 7(6):447-457. doi: 10.1243/14680874JER01206
[23] CEN K F. Combustion theory and pollution control[M]. Beijing:Mechanical Industry Press, 2004:140-145(in Chinese).
[24] DEAN J A, RAINS T C. Flame emission and atomic absorption spectrometry[M]. New York, USA:Marcel Dekker, 1971:154-156.
[25] DAVIS J P, SMITH A L, GIRANDA C, et al. Laser-induced plasma formation in Xe, Ar, N2, and O2 at the first four Nd:YAG harmonics[J]. Applied Optics, 1991, 30(30):4358-4364. doi: 10.1364/AO.30.004358
[26] CEN K F. Combustion theory and pollution control[M]. Beijing:Mechanical Industry Press, 2004:116-118(in Chinese).
[27] KIEFER J, TROGER J W, LI Z S, et al. Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics[J]. Applied Physics, 2011, B103(1):229-236.
[28] DO H, CARTER C. Hydrocarbon fuel concentration measurement in reacting flows using short-gated emission spectra of laser induced plasma[J]. Combustion & Flame, 2013, 160(3):601-609.