[1] WON R. Shining in the mid-infrared[J]. Nature Photonics, 2011, 5(8):457-458. doi: 10.1038/nphoton.2011.176
[2] WANG C Y, HERR T, DELHAYE P, et al. Mid-infrared optical frequency combs at 2.5μm based on crystalline microresonators[J]. Nature Communications, 2013, 4:1345. doi: 10.1038/ncomms2335
[3] KARTASHOV D, ALISAUSKAS S, PUGZLYS A, et al. Mid-infrared laser filamentation in molecular gases[J]. Optics Letters, 2013, 38(16):3194-3197. doi: 10.1364/OL.38.003194
[4] SINGHAL G, TYAGI R K, MAINI A K. Development of safe infrared gas lasers[J]. Optics & Laser Technology, 2013, 47(4):56-63.
[5] KNYAZEV B A, KULIPANOV G N, VINOKUROV N A. Novosibirsk terahertz free electron laser:instrumentation development and experimental achievements[J]. Measurement Science and Technology, 2010, 21(5):054017. doi: 10.1088/0957-0233/21/5/054017
[6] VIJAYRAGHAVAN K, JIANG Y, JANG M, et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers[J]. Nature Communications, 2013, 4:2021. doi: 10.1038/ncomms3021
[7] WU B, KONG J, SHEN Y. High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2W at 3.82μm[J]. Optics Letters, 2010, 35(8):1118-1120. doi: 10.1364/OL.35.001118
[8] YAO B Q, ZHU G L, JU Y L, et al. A ZnGeP2 optical parametric oscillator with mid-IR output power 3W pumped by a Tm, Ho:GdVO4laser[J]. Chinese Physics Letters, 2009, 26(2):024209. doi: 10.1088/0256-307X/26/2/024209
[9] XU L, ZHANG Sh Y, CHEN W B. Tm:YLF laser-pumped periodically poled MgO-doped congruent LiNbO3 crystal optical parametric oscillators[J]. Optics Letters, 2012, 37(4):743-745. doi: 10.1364/OL.37.000743
[10] XIE Y Zh, WANG Y, DENG H Y, et al. Study on the Mid-infrared laser PPMgLN optical parametric oscillators[J]. Laser Technology, 2014, 38(3):368-371(in Chinese).
[11] MIROV S B, FEDOROV V V, MARTYSHKIN D, et al. Progress in mid-IR lasers based on Cr and Fe-doped Ⅱ-Ⅵ chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1):292-310. doi: 10.1109/JSTQE.2014.2346512
[12] WILLIAMS J E, FEDOROV V V, MARTYSHKIN D V, et al. Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide[J]. Optics Express, 2010, 18(25):25999-26006. doi: 10.1364/OE.18.025999
[13] MARTYSHKIN D V, GOLDSTEIN J T, FEDOROV V V, et al. Crystalline Cr2+:ZnSe/chalcogenide glass composites as active mid-IR materials[J]. Optics Letters, 2011, 36(9):1530-1532. doi: 10.1364/OL.36.001530
[14] MYOUNG N S, MARTYSHKIN D V, FEDOROV V V, et al. Mid-IR lasing of iron-cobalt co-doped ZnS(Se) crystals via Co-Fe energy transfer[J]. Journal of Luminescence, 2013, 133(1):257-261.
[15] EVANS J W, BERRY P A, SCHEPLER K L. A broadly tunable continuous-wave Fe:ZnSe laser[J]. Proceedings of the SPIE, 2013, 8599:85990C. doi: 10.1117/12.2002442
[16] MIROV S B, FEDOROV VV, MARTYSHKIN D V, et al. Progress in Cr and Fe doped ZnSe and ZnS polycrystalline materials and lasers[C]//Advanced Solid State Lasers, 2014. New York, USA: Optical Society of America, 2014: AM4A.6.
[17] MYOUNG N S, FEDOROV V V, MIROV S B, et al. Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals[J]. Journal of Luminescence, 2012, 132(3):600-606. doi: 10.1016/j.jlumin.2011.10.009
[18] KOECHNER W. Solid-state laser engineering[M]. New York, USA:Springer, 2013:407-412.
[19] LUGUEVA N V, LUGUEV S M. The effect of structural defects on the thermal conductivity of ZnS, ZnSe, and CdTe polycrystals[J]. High Temperature, 2004, 42(1):54-59. doi: 10.1023/B:HITE.0000020091.31679.b0
[20] YANG Y J. Study on growth properties of several important infrared optical crystals[D]. Ji'nan: Shangdong University, 2012: 87-89(in Chinese).
[21] FU L G. Study on the preparation process of CVD ZnSe[D]. Beijing: General Research Institute for Nonferrous Metals, 2013: 11-18(in Chinese).
[22] ADAMS J J, BIBEAU C, PAGE R H, et al. 4.0~4.5μm lasing of Fe:ZnSe below 180K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23):1720-1722. doi: 10.1364/OL.24.001720
[23] MIROV S B, FEDOROV VV, MARTYSHKIN D V, et al. High average power Fe: ZnSe and Cr: ZnSe mid-IR solid state lasers[C]//Advanced Solid State Lasers, 2015. New York, USA: Optical Society of America, 2015: AW4A.1.
[24] FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I, et al. Study of a 2J pulsed Fe:ZnSe 4μm laser[J]. Laser Physics Letters, 2013, 10(12):125001. doi: 10.1088/1612-2011/10/12/125001
[25] VELIKANOV S D, ZARETSKIY N A, ZOTOV E A, et al. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes[J]. Quantum Electronics, 2015, 45(1):1-7.
[26] KOZLOVSKY V I, KOROSTELIN Y V, PODMARKOV Y P, et al. Middle infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe lasers:new results[J]. Journal of Physics:Conference Series, 2016, 740(1):012006.
[27] MYOUNG N S, MARTYSHKIN D V, FEDOROV V V, et al. Energy scaling of 4.3μm room temperature Fe:ZnSe laser[J]. Optics Letters, 2011, 36(1):94-96. doi: 10.1364/OL.36.000094
[28] FEDOROV V V, MARTYSHKIN D V, MIRROV M, et al. Fe-doped Ⅱ-Ⅵ mid-infrared laser materials for the 3 to 8μm region[J]. Applied Physics Letters, 2015, 23(4):7946-7956.
[29] KE Ch J, WANG D L, WANG X Y, et al. Mid-infrared Fe:ZnSe laser with output energy of 15mJ at room temperature[J]. Chinese Journal of Lasers, 2015, 42(2):219004(in Chinese). doi: 10.3788/CJL
[30] YAO B Q, XIA Sh X, YU K K, et al. Mid-infrared lasers output is achieved from Fe:ZnSe. Chinese Journal of Lasers, 2015, 42(1):119001(in Chinese). doi: 10.3788/CJL