[1] LI Y H, HE W F, ZHOU L Ch. The strengthening mechanism of laser shock processing and its application on the aero-engine components[J]. Scientia Sinica Technologica, 2015, 45(1):1-8(in Chinese).
[2] HU J L, LOU J, SHENG H C, et al. The effects of laser shock peening on microstructure and properties of metals and alloys:areview[J]. Advanced Materials Research, 2011, 347/353:1596-1604. doi: 10.4028/www.scientific.net/AMR.347-353
[3] LI Zh. Investigation of residual stress and fatigue performance of titanium alloy part with hole by laser shock processing[D]. Zhenjiang: Jiangsu University, 2016: 11-18(in Chinese).
[4] GOMEZ-ROSAS G, RUBIO-GONZALEZ C, OCANA J, et al. High level compressive residual stresses produced in aluminum alloys by laser shock processing[J]. Applied Surface Science, 2005, 252(4):883-887. doi: 10.1016/j.apsusc.2005.01.150
[5] MONTROSS C S, WEI T, YE L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys:a review[J]. International Journal of Fatigue, 2002, 24(10):1021-1036. doi: 10.1016/S0142-1123(02)00022-1
[6] RANKIN J E, HILL M R, HACKEL L A.The effects of process variations on residual stress in laser peened 7049-T73 aluminum alloy[J]. Materials Science and Engineering, 2003, A349(1/2):279-291.
[7] CAO Z W, CHE Zh G, ZOU Sh K, et al. The effect of laser shock peening on fatigue property of 7050 aluminum alloy fastener hole[J]. Applied Laser, 2013, 33(3):259-262(in Chinese). doi: 10.3788/AL
[8] ZHANG M Y, ZHU Y, GUO W, et al. Effects of laser shock processing on fatigue properties of TC17 titanium alloy[J]. Laser Technology, 2017, 41(2):231-234(in Chinese).
[9] RUBIO-GONZÁLEZ C, OCAÑA J L, GOMEZ-ROSAS G, et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J]. Materials Science & Engineering, 2004, A386(1/2):291-295.
[10] PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminum alloys. Application to high cycle fatigue behavior[J]. Materials Science & Engineering, 1996, A210(1/2):102-113.
[11] CLAUER A H, LAHRMAN D F. Laser shock processing as a surface enhancement process[J]. Key Engineering Materials, 2001, 197(1775):121-144.
[12] JIANG Y F, LI J, PAN Y, et al. Investigation of effect of two-side laser shock order onsmall-hole specimen strengthening[J]. Laser Technology, 2016, 40(1):82-85(in Chinese).
[13] WANG Zh P, GE M Zh. Impact of laser shock processing on fatigue strength of crankshaft[J]. Machinery Design & Manufacture, 2011(8):197-199(in Chinese).
[14] LI Q P, LI Y H, HE W F, et al. LSP to improve vibration fatigue performance of deflation valve lever[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(1):69-74(in Chinese).
[15] SPANRAD S, TONG J. Characterization of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6AL-4V aerofoil specimens[J]. Materials Science & Engineering, 2011, A528(4):2128-2136.
[16] YANG C, HODGSON P D, LIU Q, et al. Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening[J]. Journal of Materials Processing Technology, 2008, 201(1):303-309.
[17] NIE X, HE W, ZANG S, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface & Coatings Technology, 2014, 253(9):68-75.
[18] HERSHKO E, MANDELKER N, GHEORGHIU G, et al. Assessment of fatigue striation counting accuracy using high resolution scanning electron microscope[J]. Engineering Failure Analysis, 2008, 15(1/2):20-27.