[1] CAPELLO E, CHIARELLO P, PREVITALI B. Laser welding and urface treatment of a 22Cr-5Ni-2Mo duplex stainless steel[J]. Materials Science and Engineering, 2003, A351(1):334-343.
[2] TRTICA M S, GAKOVIC B M. Surface modification of stainles steels by TEA CO2 laser[J]. Applied Surface Science, 2001, 177(1/2):48-57.
[3] BONSE J, HÖHM S, ROSENFELD A, et al. Sub-100nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air[J]. Applied Physics, 2013, A110(3):547-551.
[4] BIGERELLE M, ANSELME K. A kinetic approach to osteoblast adhension on biomaterial surface[J]. Journal of Biomedical Materials Research Part, 2005, A75(3):530-540.
[5] BIRNBAUM M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics, 1966, 36(11):3688-3689.
[6] BOROWIEC A, HAUGEN H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Applied Physics Letters, 2003, 82(25):4462-4464. doi: 10.1063/1.1586457
[7] NATHALA C S, AJAMI A, IONIN A A, et al. Experimental study of fs-laser induced sub-100nm periodic surface structures on titanium[J]. Optics Express, 2015, 23(5):5915-5929. doi: 10.1364/OE.23.005915
[8] BALDACCHINI T, CAREY J E, ZHOU M, et al.Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2006, 22(11):4917-4919.
[9] MORADI S, KAMAL S, ENGLEZOS P, et al. Femtosecond laser irradiation of metallic surfaces:Effects of laser parameters on superhydrophobicity[J]. Nanotechnology, 2013, 24(41):415302. doi: 10.1088/0957-4484/24/41/415302
[10] VOROBYEV A Y, GUO C. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 2008, 92(4):041914. doi: 10.1063/1.2834902
[11] WANG W P, LÜ B D, LIU C L. Laser induced ripples on the surface of optical devices[J]. Laser & Optoelectronics Progress, 2002, 39(6):13-19(in Chinese).
[12] ANISIMOV S I, KAPELIOVICH B L, PEREL'MAN T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Soviet Journal of Experimental and Theoretical Physics, 1974, 39(2):375-377.
[13] LINDE D V D, SOKOLOWSKI-TINTEN K, BIALKOWSKI J. Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science, 1997, 109(10):1-10.
[14] RETHFELD B, SOKOLOWSKI-TINTEN K, LINDE D V D, et al. Timescales in the response of materials to femtosecond laser excitation[J]. Applied Physics, 2004, A79(4):767-769.
[15] DUFFT D, ROSENFELD A, DAS S K, et al. Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO[J]. Journal of Applied Physics, 2009, 105(3):034908. doi: 10.1063/1.3074106
[16] GUO X D, LI R X, HANG Y, et al. Femtosecond laser-induced periodic surface structure on ZnO[J]. Materials Letters, 2008, 62(12/13):1769-1771.
[17] GUAN Y C, ZHOU W, LI Z L, et al. Femtosecond laser-induced iridescent effect on AZ31B magnesium alloy surface[J]. Journal of Physics, 2013, D46(42):425305.
[18] SAKABE S, HASHIDA M, TOKITA S, et al. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse[J]. Physical Review, 2009, B79(3):033409.
[19] MORGNER U, KARTNER F X, CHO S H, et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti-sapphire laser[J].Optics Letters, 1999, 24(6):411-413. doi: 10.1364/OL.24.000411
[20] MANNION P T, MAGEE J, COYNE E, et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J].Applied Surface Science, 2004, 233(1/4):275-287.
[21] YUAN D Q, ZHOU M, CAI L A, et al. Femtosecond laser microprocessing Au film[J]. Spectroscopy and Spectral Analysis, 2009, 29(5):1209-1212(in Chinese).