[1] ZHANG Y Sh. The principle of radar electronic warfare[M].Beijing:National Defense Industry Press, 2005:20-50(in Chinese).
[2] LI W L, HE Z A, ZHOU T. Superheterodyne receiver based on optical bandpass sampling[J]. Electronic Information Confrontation Techno-logy, 2013, 28(4):39-42(in Chinese).
[3] ZOU X H, LU B, PAN W, et al. Photonics for microwave measurements[J]. Laser & Photonics Reviews, 2016, 10(5):711-734.
[4] NGUYEN L V T, HUNTER D B. A photonic technique for microwave frequency measurement[J]. IEEE Photonics Technology Letters, 2006, 18(10):1188-1190. doi: 10.1109/LPT.2006.874742
[5] ZOU X H, PAN Sh L, YAO J P. Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation[J]. Journal of Lightwave Technology, 2009, 27(23):5314-5320. doi: 10.1109/JLT.2009.2030695
[6] LI X Y, WEN A J, MA X M, et al. Photonic microwave frequency measurement with a tunable range based on a dual-polarization modulator[J]. Applied Optics, 2016, 55(31):8727-8731. doi: 10.1364/AO.55.008727
[7] TU Zh Y, WEN A J, GAO Y Sh, et al. A photonic techn ique for instantaneous microwave frequency measurement utilizing a phase modulator[J]. IEEE Photonics Technology Letters, 2016, 28(24):2795-2798. doi: 10.1109/LPT.2016.2623321
[8] CHI H, ZOU X H, YAO J P. An approach to the measur-ement of microwave frequency based on optical power monitoring[J]. IEEE Photonics Technology Letters, 2008, 20(14):1249-1251. doi: 10.1109/LPT.2008.926025
[9] ZOU X H, CHI H, YAO J P. Microwave frequency meas- urement based on optical power monitoring using a complementary optical filter pair[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(2):505-511. doi: 10.1109/TMTT.2008.2011237
[10] ZOU X H, PAN W, LUO B, et al. Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters[J]. IEEE Photonics Technology Letters, 2011, 23(1):39-41. doi: 10.1109/LPT.2010.2090867
[11] SARKHOSH N, EMAMI H, BUI L, et al. Reduced cost photonic instantaneous frequency measurement system[J]. IEEE Photonics Technology Letters, 2008, 20(18):1521-1523. doi: 10.1109/LPT.2008.927895
[12] BUI L A, MITCHELL A. Amplitude independent instan-taneous frequency measurement using all optical technique[J]. Optics Express, 2013, 21(24):29601-29611. doi: 10.1364/OE.21.029601
[13] EMAMI H, ASHOURIAN M. Improved dynamic range microwave photonic instantaneous frequency measurement based on fourwave mixing[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(10):2462-2470. doi: 10.1109/TMTT.2014.2341624
[14] WANG W Sh, DAVIS R L, JUNG T J, et al. Characterization of a coherent optical RF channelizer based on a diffraction grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10):1996-2001. doi: 10.1109/22.954820
[15] ZOU X H, PAN W, LUO B, et al. Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source[J]. Optics Letters, 2010, 35(3):438-440. doi: 10.1364/OL.35.000438
[16] WIBERG A O J, ESMAN D J, LIU L, et al. Coherent filterless Wideband microwave/millimeter-wave channelizer based on broadband parametric mixers[J]. Journal of Lightwave Technology, 2014, 32(20):3609-3617. doi: 10.1109/JLT.2014.2320445
[17] ZOU X H, LI W, PAN W, et al. Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(9):3470-3478. doi: 10.1109/TMTT.2013.2273892
[18] XU W Y, ZHU D, PAN Sh L. Coherent photonic radio frequency channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering[J]. Optical Engineering, 2016, 55(4):046106. doi: 10.1117/1.OE.55.4.046106
[19] NGUYEN T A, CHAN E H W, MINASIAN R A. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mappingtechnique[J]. Optics Letters, 2014, 39(8):2419-2422. doi: 10.1364/OL.39.002419
[20] VIDAL B, MENGUAL T, MARTI J. Photonic technique for the measurement of frequency and power of multiple microwave signals[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11):3103-3108. doi: 10.1109/TMTT.2010.2076710
[21] WANG Y, CHI H, ZHANG X M, et al. Photonic approach for microwave spectral analysis based on Fourier cosine transform[J]. Optics Letters, 2011, 36(19):3897-3899. doi: 10.1364/OL.36.003897
[22] RUGELAND P, YU Z, STERNER C, et al. Photonic scanning receiver using an electrically tuned fiber Bragg grating[J]. Optics Letters, 2009, 34(24):3794-3796. doi: 10.1364/OL.34.003794
[23] GUO H L, XIAO G Zh, MRAD N, et al. Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating[J]. IEEE Photonics Technology Letters, 2009, 21(1):45-47. doi: 10.1109/LPT.2008.2008199
[24] JIANG H Y, MARPAUNG D, PAGANI M, et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 2016, 3(1):30-34.
[25] CHI H, YAO J P. Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator[J]. Electronics Letters, 2007, 43(7):415-417. doi: 10.1049/el:20073808
[26] SAPERSTEIN R E, PANASENKO D, FAINMAN Y. Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber[J]. Optics Letters, 2004, 29(5):501-503. doi: 10.1364/OL.29.000501
[27] DUAN Y H, CHEN L, ZHOU H D, et al. Ultrafast electrical spectrum analyzer based on all-optical Fourier transformand temporal magnification[J]. Optics Express, 2017, 25(7):7520-7529. doi: 10.1364/OE.25.007520
[28] LU B, PAN W, ZOU X H, et al. Photonic microwave frequency measurement with high-coding-efficiency digital outputs and large measurement range[J]. IEEE Photonics Journal, 2013, 5(5):5501906. doi: 10.1109/JPHOT.2013.2280517
[29] CHEN Y, YANG B, CHI H, et al. Photonic instantaneous frequency measurement with digital output based on dispersion induced power fading functions[J]. Optics Communications, 2013, 292(4):53-56.
[30] MA Y X, LIANG D, PENG D, et al. Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters[J]. Optics Express, 2017, 25(3):2355-2368. doi: 10.1364/OE.25.002355
[31] BHUSHAN A S, COPPINGER F, JALALI B.Time-stretched analogue-to-digital conversion[J]. Electronics Letters, 1998, 34(9):839-841. doi: 10.1049/el:19980629
[32] TROPP J A, LASKA J N, DUARTE M F, et al. Beyond Nyquist: E-fficient sampling of sparse bandlimited signals[J]. IEEE Transactions on Information Theory, 2010, 56(1):520-544. doi: 10.1109/TIT.2009.2034811
[33] NICHOLS J M, BUCHOLTZ F. Beating Nyquist with light:a compressively sampled photonic link[J]. Optics Express, 2011, 19(8):7339-7348. doi: 10.1364/OE.19.007339
[34] CHI H, MEI Y, CHEN Y, et al. Microwave spectral analysis based on photonic compressive sampling with random demodulation[J]. Optics Letters, 2012, 37(22):4636-4638. doi: 10.1364/OL.37.004636
[35] VALLEY G C, SEFLER G A, SHAW T J. Compressive sensing of sparse radio frequency signals using optical mixing[J]. Optics Lett-ers, 2012, 37(22):4675-4677. doi: 10.1364/OL.37.004675
[36] GUO Q, LIANG Y H, CHEN M H, et al. Compressive spectrum sensing of radar pulses based on photonic techniques[J]. Optics Express, 2015, 23(4):4517-4522. doi: 10.1364/OE.23.004517
[37] NAN H, GU Y T, ZHANG H M. Optical analog-to-digital conversion system based on compressive sampling[J]. IEEE Photonics Techno-logy Letters, 2011, 23(2):67-69. doi: 10.1109/LPT.2010.2086442
[38] CHI H, CHEN Y, MEI Y, et al. Microwave spectrum sensing based on photonic time stretch and compressive sampling[J]. Optics Lett-ers, 2013, 38(2):136-138. doi: 10.1364/OL.38.000136
[39] LIU X D. Integrated optics and its applications[J].Laser Technology, 1981, 5(2):1-7(in Chinese).
[40] MARPAUNG D. On-chip photonic-assisted instantaneous microwave frequency measurement system[J]. IEEE Photonics Technology Letters, 2013, 25(9):837-840. doi: 10.1109/LPT.2013.2253602
[41] PAGANI M, MORRISON B, ZHANG Y, et al. Low-error and broadband microwave frequency measurement in a silicon chip[J]. Optica, 2015, 2(8):751-756. doi: 10.1364/OPTICA.2.000751
[42] SONG M G, CAO L Q, LIU F M, et al.Optimized design of grating coupling packaging structure on siliconsubstrate[J]. Laser Techno-logy, 2017, 41(4):479-483(in Chinese).