[1] ENGHETA N, ZIOLKOWSKI R W.Metamaterials:physics and engineering explorations[M].Hoboken, USA:John Wiley & Sons Inc., 2006:9-85.
[2] ELEFHERIADES G V, BALMAIN K G.Negative-refraction metamaterials:fundamental principles and applications[M].Hoboken, USA:John Wiley & Sons Inc., 2005:5-55.
[3] CAI W, SHALAEV V M.Optical metamaterials:fundamentals and applications[M].New York, USA:Stanford University, 2010:59-88.
[4] ANDEREGG M, FEUERBACHER B, FITTON B. Optically excited longitudinal plasmons in potassium[J]. Physical Review Letters, 1971, 27(23):1565-1568. doi: 10.1103/PhysRevLett.27.1565
[5] SPITZER W G, KLEINMAN D, WALSH D. Infrared properties of hexagonal silicon carbide[J]. Physical Review, 1959, 113(1):127-132. doi: 10.1103/PhysRev.113.127
[6] KOROBKIN D, URZHUMOV Y, SHVETS G.Enhanced near-feld resolution in midinfrared using metamaterials[J].Journal of the Optical Society of America, 2006, B23(3):468-478.
[7] CALDWELL J, LINDSAY L, GIANNINI V, et al.Low-loss, infrared and terahertz nanophotonics using surfacephonon polaritons[J].Nanophotonics, 2015, 4(1):44-68.
[8] KIM J. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas[J].Optica, 2016, 3(3):339-346. doi: 10.1364/OPTICA.3.000339
[9] NAIK G V, KIM J, BOLTASSEVA A. Oxides and nitrides as alternative plasmonic materials in the optical range[J].Optical Materials Express, 2011, 1(6):1090-1099. doi: 10.1364/OME.1.001090
[10] NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials:beyond gold and silver[J].Advanced Materials, 2013, 25(24):3264-3294. doi: 10.1002/adma.v25.24
[11] KINSEY N. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths[J]. Optica, 2015, 2(7):616-622. doi: 10.1364/OPTICA.2.000616
[12] OU J Y, SO J K, ADAMO G, et al. Ultraviolet and visible range plasmonics of a topological insulator[J]. Nature Communications, 2014, 5:5139. doi: 10.1038/ncomms6139
[13] KHURGIN J B. How to deal with the loss in plasmonics and metamaterials[J]. Nat Nanotechnol, 2015, 10(1):2-6. doi: 10.1038/nnano.2014.310
[14] BROWN J. Artifcial dielectrics having refractive indices less than unity[J]. IEEE Xplore, 1953, 100(5):51-62.
[15] ROTMAN W. Plasma simulation by artifcial dielectrics and parallel-plate media[J]. Institute of Radio Engineers Transactions on Antennas and Propagation, 1962, 10(1):82-95.
[16] KING R J, TIEL D V, PARK K S. The synthesis of surface reactance using an artifcial dielectric[J].IEEE Transactions on Antennas and Propagation, 1983, 31(3):471-476. doi: 10.1109/TAP.1983.1143071
[17] GIOVAMPAOLA C D, ENGHETA N. Plasmonics without negative dielectrics[J]. Physical Review, 2016, B93(19):195152.
[18] LI Y, LIBERAL I, GIOVAMPAOLA C D, et al.Waveguide metatronics:lumped circuitry based on structural dispersion[J]. Science Advances, 2016, 2(6):e1501790. doi: 10.1126/sciadv.1501790
[19] MAHMOUD A M, ENGHETA N.Wave-matterinteractions in epsilon-and-mu-near-zero structures[J]. Nature Communications, 2014, 5:5638. doi: 10.1038/ncomms6638
[20] SILVEIRINHA M, ENGHETA N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media[J]. Physical Review, 2007, B75(7):075119.
[21] VESSEUR E J, COENEN T, CAGLAYAN H, et al. Experimental verification of n=0 structures for visible light[J]. Physical Review Letters, 2013, 110(1):013902. doi: 10.1103/PhysRevLett.110.013902
[22] PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25):4773-4776. doi: 10.1103/PhysRevLett.76.4773
[23] MOSES C A, ENGHETA N. Electromagnetic wave propagation in the wire medium:a complex medium with long thin inclusions[J]. Wave Motion, 2001, 34(3):301-317. doi: 10.1016/S0165-2125(01)00095-6
[24] BELOV P A, TRETYAKOV S A, VⅡTANEN A J. Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires[J]. Journal of Electromagnetic Waves and Applications, 2002, 16(8):1153-1170. doi: 10.1163/156939302X00688
[25] MASLOVSKI S I, TRETYAKOV S A, BELOV P A. Wire media with negative effective permittivity:a quasi-static model[J]. Microwave and Optical Technology Letters, 2002, 35(1):47-51. doi: 10.1002/(ISSN)1098-2760
[26] SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18):4184-4187. doi: 10.1103/PhysRevLett.84.4184
[27] BELOV P A. Strong spatial dispersion in wire media in the very large wavelength limit[J]. Physical Review, 2003, B67(11):113103.
[28] MAAS R. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths[J]. Nature Photonics, 2013, 7(11):907-912. doi: 10.1038/nphoton.2013.256
[29] LEWIN L. The electrical constants of a material loaded with spherical particles[J]. Journal of the Institution of Electrical Engineers, 1947, 94(27):65-68.
[30] O'BRIEN S, PENDRY J B. Photonic band-gap effects and magnetic activity in dielectric composites[J]. Journal of Physics Condensed Matter, 2002, 14(15):4035-4044. doi: 10.1088/0953-8984/14/15/317
[31] ZHAO Q, ZHOU J, ZHANG F, et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 2009, 12(12):60-69. doi: 10.1016/S1369-7021(09)70318-9
[32] WU Y, LI J, ZHANG Z Q, et al. Effective medium theory for magnetodielectric composites:beyond the long-wavelength limit[J]. Physical Review, 2006, B74(8):085111.
[33] MOITRA P. Realization of an all-dielectric zero-index optical metamaterial[J]. Nature Photonics, 2013, 7(10):791-795. doi: 10.1038/nphoton.2013.214
[34] HUANG X, LAI Y, HANG Zh, et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials[J]. Nature Materials, 2011, 10(8):582-586. doi: 10.1038/nmat3030
[35] LI Y. On-chip zero-index metamaterials[J]. Nature Photonics, 2015, 9(11):738-742. doi: 10.1038/nphoton.2015.198
[36] ZIOLKOWSKI R W. Propagation in and scattering from a matched metamaterial having a zero index of refraction[J]. Physical Review, 2004, E70(2):046608.
[37] CIATTONI A. Polariton excitation in epsilon-near-zero slabs:transient trapping of slow light[J]. Physical Review, 2013, A87(5):053853.
[38] JAVANI M H, STOCKMAN M I. Real and imaginary properties of epsilon-near-zero materials[J].Physical Review Letters, 2016, 117(10):107404. doi: 10.1103/PhysRevLett.117.107404
[39] SILVEIRINHA M G, ENGHETA N. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials[J].Physical Review Letters, 2006, 97(15):157403. doi: 10.1103/PhysRevLett.97.157403
[40] SILVEIRINHA M G, ENGHETA N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends usingεnear-zero metamaterials[J]. Physical Review, 2007, B76(24):245109.
[41] EDWARDS B, ALÙ A, YOUNG M E, et al. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide[J]. Physical Review Letters, 2008, 100(3):033903. doi: 10.1103/PhysRevLett.100.033903
[42] EDWARDS B, ALÙ A, SILVEIRINHA M G, et al. Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects[J].Journal of Applied Physics, 2009, 105(4):044905. doi: 10.1063/1.3074506
[43] ALÙ A, SILVEIRINHA M G, ENGHETA N. Transmission-line analysis of epsilon-near-zero-filled narrow channels[J]. Physical Review, 2008, E78(1/2):016604.
[44] MARCOS J S, SILVEIRINHA M G, ENGHETA N. μ-near-zero supercoupling[J]. Physical Review, 2015, B91(19):195112.
[45] NGUYEN V C, CHEN L, HALTERMAN K. Total transmission and total reflection by zero index metamaterials with defects[J]. Physical Review Letters, 2010, 105(23):233908. doi: 10.1103/PhysRevLett.105.233908
[46] HAO J, YAN W, QIU M. Super-reflection and cloaking based on zero index metamaterial[J]. Applied Physics Letters, 2010, 96(10):101109. doi: 10.1063/1.3359428
[47] ENOCH S. A metamaterial for directive emission[J]. Physical Review Letters, 2002, 89(21):213902. doi: 10.1103/PhysRevLett.89.213902
[48] ALÙ A. Epsilon-near-zero metamaterials and electromagnetic sources:Tailoring the radiation phase pattern[J]. Physical Review, 2007, B75(15):155410.
[49] ALÙ A, ENGHETA N. Boosting molecular fluorescence with a plasmonic nanolauncher[J]. Physical Review Letters, 2009, 103(4):043902. doi: 10.1103/PhysRevLett.103.043902
[50] ENGHETA N, SALANDRINO A, ALÙ A. Circuit elements at optical frequencies:nanoinductors, nanocapacitors, and nanoresistors[J]. Physical Review Letters, 2005, 95(9):095504. doi: 10.1103/PhysRevLett.95.095504
[51] ENGHETA N. Circuits with light at nanoscales:optical nanocircuits inspired by metamaterials[J]. Science, 2007, 317(5845):1698-1702. doi: 10.1126/science.1133268
[52] ALÙ A, ENGHETA N. All optical metamaterial circuit board at the nanoscale[J]. Physical Review Letters, 2009, 103(14):143902. doi: 10.1103/PhysRevLett.103.143902
[53] ALÙ A, ENGHETA N. Optical 'shorting wires'[J].Optics Express, 2007, 15(21):13773-13782. doi: 10.1364/OE.15.013773
[54] EDWARDS B, ENGHETA N. Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry[J].Physical Review Letters, 2012, 108(19):193902. doi: 10.1103/PhysRevLett.108.193902
[55] LIU R, ROBERTSC M, ZHONG Y, et al. Epsilon-near-zero photonics wires[J]. ACS Photonics, 2016, 3(6):1045-1052. doi: 10.1021/acsphotonics.6b00120
[56] RODRIGUEZ-FORTUNO F J, VAKIL A, ENGHETA N. Electric levitation using -near-zero metamaterials[J].Physical Review Letters, 2014, 112(3):033902. doi: 10.1103/PhysRevLett.112.033902
[57] LINDELL I V, SIHVOLA A H. Electromagnetic boundary and its realization with anisotropic metamaterial[J]. Physical Review, 2009, E79(2):026604.
[58] RUMSEY V H. Some new forms of Huygens' principle[J]. IEEE Xplore, 1959, 7(5):103-116.
[59] YAGHJIAN A D, MACI S. Alternative derivation of electromagnetic cloaks and concentrators[J]. New Journal of Physics, 2007, 10(11):115022.
[60] von NEUMANN J, WIGNER E. über merkwürdige diskrete eigenwerte[J].Physikalische Zeitschrift, 1929, 30:467-470.
[61] CAPASSO F, SIRTORI C, FAIST J, et al. Observation of an electronic bound state above a potential well[J]. Nature, 1992, 358(6387):565-567. doi: 10.1038/358565a0
[62] DEVANEY A J, WOLF E. Radiating and nonradiating classical current distributions and the felds they generate[J]. Physical Review, 1973, D8(4):1044-1047.
[63] MARENGO E A, ZIOLKOWSKI R W. On the radiating and nonradiating components of scalar, electromagnetic and weak gravitational sources[J].Physical Review Letters, 1999, 83(17):3345-3349. doi: 10.1103/PhysRevLett.83.3345
[64] MARINICA D C, BORISOV A G, SHABANOV S V. Bound States in the continuum in photonics[J]. Physical Review Letters, 2008, 100(18):183902. doi: 10.1103/PhysRevLett.100.183902
[65] LEE J. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs[J]. Physical Review Letters, 2012, 109(6):067401. doi: 10.1103/PhysRevLett.109.067401
[66] ERENTOK A, ZIOLKOWSKI R W. A hybrid optimization method to analyze metamaterial-based electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3):731-741. doi: 10.1109/TAP.2007.891553
[67] LIBERAL I, ENGHETA N. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities[J].Science Advances, 2016, 2(10):e1600987. doi: 10.1126/sciadv.1600987