[1] TAN H B. Flexible display technology[J]. Recording Media Technology, 2010(5):61-64(in Chinese).
[2] LIU X, LÜ Y J, WANG L F, et al. Research progress of stretchable and flexible electronic Technology[J]. Semiconductor Technology, 2015, 40(3):161-166(in Chinese).
[3] DELMDAHL R. The excimer laser:precision engineering[J]. Nature Photonics, 2010, 4(5):286-286. doi: 10.1038/nphoton.2010.106
[4] HSIEH K L, CHENG K N, WANG P F, et al. P-50:Application of high temperature debonding layer in the fabrication of flexible AMOLED displays[J]. Sid Symposium Digest of Technical Papers, 2016, 47(1):1324-1327. doi: 10.1002/sdtp.10922
[5] LÜ Sh G, DENG W, X F. Royole echnology:leading the global "flexibledisplay"[J].Invention & Innovation, 2016(9):36-37(in Chin-ese).
[6] ZHANG X. Laser technology in flexible displays[J]. Light Electrical and Mechanical Information, 2008, 25(11):11-14(in Chinese).
[7] LI T H. Brief introduction to key issues of flexible display technology[J].Video Engineering, 2009, 33(8):25-29(in Chinese).
[8] YANG Zh, HU W B. Developments of microcapsule electrophoretic display[J].Vacuum Electronics Technology, 2012(6):59-64(in Chinese).
[9] CHEN G K J, CHEN J. Handbook of visual display technology[M].Berlin, Germany:Springer International Publishing, 2016:1359-1376.
[10] LI Ch, HUANG G M, DUAN L, et al.Recent advances in organic light-emitting diodes for flexible applications[J]. Material China, 2016, 35(2):101-107.
[11] TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12):913-915. doi: 10.1063/1.98799
[12] BOLAND J J. Flexible electronics:within touch of artificial skin[J]. Nature Materials, 2010, 9(10):790-792. doi: 10.1038/nmat2861
[13] GATES B D. Flexible Electronics[J]. Science, 2009, 323(5921):1566-1567. doi: 10.1126/science.1171230
[14] NOMURA K, TAKAGI A, KAMIYA T, et al. Amorphous oxide semiconductors for high-performance flexible thin-film transistors[J]. Japanese Journal of Applied Physics, 2006, 45(5):4303-4308.
[15] CHIRILA A, BUECHELER S, PIANEZZI F, et al. Highly efficient Cu (In, Ga) Se2 solar cells grown on flexible polymer films[J]. Nature Materials, 2011, 10(11):857-861. doi: 10.1038/nmat3122
[16] YOO J S, JUNG S H, KIM Y C, et al. Highly flexible AM-OLED display with integrated gate driver using amorphous silicon TFT on ultrathin metal foil[J]. Journal of Display Technology, 2010, 6(11):565-570. doi: 10.1109/JDT.2010.2048998
[17] CRAWFORD G P. Flexible flat panel displays[M]. Rhode Island, USA:John Wiley & Sons, 2005:2-6.
[18] KIM K, KIM S Y, LEE J L. Flexible organic light-emitting diodes using a laser lift-off method[J]. Journal of Materials Chemistry, 2014, C2(12):2144-2149.
[19] TSUJIMURA T, FUKAWA J, ENDOH K, et al. Development of flexible organic light-emitting diode on barrier film and roll-to-roll manufacturing[J]. Journal of the Society for Information Display, 2014, 22(8):412-418. doi: 10.1002/jsid.261
[20] KOEZUKA J, IDOJIRI S, SHIMA Y, et al. 24-1:Invited paper:flexible OLED display using c-axis-aligned-crystal/cloud-aligned composite oxide semiconductor technology and laser separation technology[J]. Sid Symposium Digest of Technical Papers, 2017, 48(1):329-332. doi: 10.1002/sdtp.11641
[21] SELVAN K V, ALI M S M. Micro-scale energy harvesting devices:Review of methodological performances in the last decade[J]. Renewable and Sustainable Energy Reviews, 2016, 54:1035-1047. doi: 10.1016/j.rser.2015.10.046
[22] MITCHESON P D, YEATMAN E M, RAO G K, et al. Energy harvesting from human and machine motion for wireless electronic devices[J]. Proceedings of the IEEE, 2008, 96(9):1457-1486. doi: 10.1109/JPROC.2008.927494
[23] ERICKSON E M, MARKEVICH E, SALITRA G, et al. Development of advanced rechargeable batteries:a continuous challenge in the choice of suitable electrolyte solutions[J]. Journal of The Electrochemical Society, 2015, 162(14):A2424-A2438. doi: 10.1149/2.0051514jes
[24] KIM S J, LEE H E, CHOI H, et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process[J]. American Chemical Society Nano, 2016, 10(12):10851-10857.
[25] JOE D J, KIM S, PARK J H, et al. Laser-material interactions for flexible applications[J]. Advanced Materials, 2017, 29(26):1606586. doi: 10.1002/adma.v29.26
[26] PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.[J]. Advanced Materials, 2014, 26(16):2514-2520. doi: 10.1002/adma.v26.16
[27] ROSENBERG I, PERLIN K. The UnMousePad:an interpolating multi-touch force-sensing input pad[J].ACM Transactions on Graphics 2009, 28(3):65.
[28] DIETZ P, LEIGH D. DiamondTouch: a multi-user touch technology[C]//Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology.New York, USA: Association for Computing Machinery, 2001: 219-226.
[29] NOH M S, KIM S, HWANG D K, et al. Self-powered flexible touch sensors based on PZT thin films using laser lift-off[J]. Sensors and Actuators, 2017, A261:288-294.
[30] LI W. Preparation and properties of high d33 PLZT/PVDF piezoelectric composites[D].Zhenjiang: Jiangsu University, 2016: 4-10(in Chinese).
[31] JI Y, ZEIGLER D F, LEE D S, et al. Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture[J]. Nature Communications, 2013, 4(4):2707(2013).
[32] KIM S J, LEE J S. Flexible organic transistor memory devices[J]. Nano Letters, 2010, 10(8):2884-2890. doi: 10.1021/nl1009662
[33] MENARD E, LEE K J, KHANG D Y, et al. A printable form of silicon for high performance thin film transistors on plastic substrates[J]. Applied Physics Letters, 2004, 84(26):5398-5400. doi: 10.1063/1.1767591
[34] KIM S, SON J H, LEE S H, et al. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off[J]. Advanced Materials, 2014, 26(44):7480-7487. doi: 10.1002/adma.201402472