[1] ZHANG Q Sh, YANG D K, WEI Y Ch, et al. Relations between common waveforms in electronics[J]. Acta Aeronautica ET Astronautica Sinica, 2001, B22(6):34-37(in Chinses).
[2] LI Q, LIANG L, GUO R H, et al. Experimental study about microwave photonic frequency multiplication system based on polarization modulator[J]. Laser Technology, 2014, 38(5): 660-664(in Chinses).
[3] ZOU G J, ZHANG B F, TENG Y Ch, et al. Study on generation and distribution of microwave signals based on optoelectronic oscillator for satellite applications[J]. Laser Technology, 2017, 41(4): 582-585(in Chinese).
[4] PU T. Principle and application of microwave photonics[M]. Beijing: Publishing House of Electronics Industry, 2015: 79-83(in Ch-inese).
[5] WANG H, LATKIN A I, BOSCOLO S, et al. Generation of triangular-shaped optical pulses in normally dispersive fibre[J]. Journal of Optics, 2010, 12(3):220-221.
[6] XIAO S, McKINNEY J D, WEINER A M. Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper[J]. IEEE Photonics Techno-logy Letters, 2004, 16(8):1936-1938. doi: 10.1109/LPT.2004.831324
[7] CHOU J, HAN Y, JALALI B. Adaptive RF-photonic arbitrary waveform generator[J]. IEEE International Topical Meeting on Microwave Photonics, 2003, 15(4):93-96.
[8] WANG C, YAO J. Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2008, 20(11):882-884. doi: 10.1109/LPT.2008.922333
[9] CHI H, YAO J. Chirped RF pulse generation based on optical spectral shaping and wavelength-to-time mapping using a nonlinearly chirped fiber Bragg grating[J]. Journal of Lightwave Technology, 2008, 26(10):1282-1287. doi: 10.1109/JLT.2008.917768
[10] LI J, NING T, PEI L, et al. Photonic-assisted periodic triangular-shaped pulses generation with tunable repetition rate[J]. IEEE Photonics Technology Letters, 2013, 25(10):952-954. doi: 10.1109/LPT.2013.2253454
[11] MA C, JIANG Y, BAI G, et al. Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach-Zehnder modulator[J]. Optics Communications, 2016, 363:207-210. doi: 10.1016/j.optcom.2015.10.054
[12] XIANG P, GUO H, CHEN D, et al. A novel approach to photonic generation of periodic triangular radio frequency waveforms[J]. Optica Applicata, 2015, 45(3):381-391.
[13] SHI Y L, ZHANG Y, SUN L J. Influence of lasers on phase noise of optoelectronic oscillators[J]. Laser Technology, 2015, 39(6):761-764(in Chinses).
[14] MALEKI L. Sources: The optoelectronic oscillator[J]. Nature Photonics, 2011, 5(12): 728-730. doi: 10.1038/nphoton.2011.293
[15] LI W, YAO J. An optically tunable optoelectronic oscillator[J]. Journal of Lightwave Technology, 2010, 28(18):2640-2645. doi: 10.1109/JLT.2010.2058792
[16] YAO X S, MALEKI L. Optoelectronic oscillator for photonic systems[J]. IEEE Journal of Quantum Electronics, 1996, 32(7):1141-1149. doi: 10.1109/3.517013
[17] GAO Y, WEN A, ZHENG H, et al. Photonic microwave waveform generation based on phase modulation and tunable dispersion[J]. Optics Express, 2016, 24(12):12524-12533. doi: 10.1364/OE.24.012524
[18] ZHANG F, GAO B, ZHOU P, et al. Triangular pulse generation by polarization multiplexed optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2016, 28(15):1645-1648. doi: 10.1109/LPT.2016.2562031
[19] LI W, KONG F, YAO J. Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator[J]. Journal of Lightwave Technology, 2013, 31(23):3780-3786. doi: 10.1109/JLT.2013.2287122
[20] HUANG L, CHEN D, WANG P, et al. Generation of triangular pulses based on an optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2015, 27(23):2500-2503. doi: 10.1109/LPT.2015.2472419
[21] WU T, JIANG Y, MA C, et al. Simultaneous triangular waveform signal and microwave signal generation based on dual-loop optoelectronic oscillator[J]. IEEE Photonics Journal, 2017, 8(6):1-10.