[1] HUO M R, QIN J L, SUN Y R, et al. Analysis on phase-matching relations in PPKTP crystal[J]. Journal of Shanxi University (Natural Science Edition), 2018, 41(2): 356-361(in Chinese).
[2] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046. doi: 10.1103/PhysRevLett.59.2044
[3] KWIAT P G, MATTLE K, WEINFURTER H, et al. New high-intensity source of polarization-entangled photon pairs[J]. Physical Review Letters, 1995, 75(24): 4337-4341. doi: 10.1103/PhysRevLett.75.4337
[4] CHEN J, PEARLMAN A J, LING A, et al. A versatile waveguide source of photon pairs for chip-scale quantum information processing[J]. Optics Express, 2009, 17(8): 6727-6740. doi: 10.1364/OE.17.006727
[5] CAO Y, LI Y H, ZOU W J, et al. Bell test over extremely high-loss channels: Towards distributing entangled photon pairs between earth and the moon[J]. Physical Review Letters, 2018, 120(14): 140405. doi: 10.1103/PhysRevLett.120.140405
[6] OU Z Y, MANDEL L. Violation of Bell's inequality and classical probability in a two-photon correlation experiment[J]. Physical Review Letters, 1988, 61(1): 50-53. doi: 10.1103/PhysRevLett.61.50
[7] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarization-entangled photons[J]. Physical Review, 1999, A60(2): R773-R776.
[8] ALTEPETER J B, JEFFREY E R, KWIAT P G. Phase-compensated ultra-bright source of entangled photons[J]. Optics Express, 2005, 13(22): 8951-8959. doi: 10.1364/OPEX.13.008951
[9] SHI B S, TOMITA A. Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer[J]. Physical Review, 2004, A69(1): 013803.
[10] IKUTA R, KUSAKA Y, KITANO T, et al. Wide-band quantum interface for visible-to-telecommunication wavelength conversion[J]. Nature Communications, 2011(2): 537.
[11] PAN J W. Quantum teleportation and multi-photon entanglement[J]. Fundamental of Quantum Information, 2001, C32(1): 21-25.
[12] MATTLE K, WEINFURTER H, KWIAT P G, et al. Dense coding in experimental quantum communication[J]. Physical Review Le-tters, 1996, 76(25): 4656-4659. doi: 10.1103/PhysRevLett.76.4656
[13] PAN J W, BOUWMEESTER D, WEINFURTER H, et al. Experimental entanglement swapping: Entangling photons that never interacted[J]. Physical Review Letters, 1998, 80(18): 3891-3894. doi: 10.1103/PhysRevLett.80.3891
[14] KIM Y H, KULIK S P, CHEKHOVA M V, et al. Experimental entanglement concentration and universal Bell-state synthesizer[J]. Physical Review, 2003, A67(1): 010301.
[15] TAKEUCHI SHIGEKI. Beamlike twin-photon generation by use of type Ⅱ parametric downconversion[J]. Optics Letters, 2001, 26(11): 843-845. doi: 10.1364/OL.26.000843
[16] NIU X L, HUANG Y F, XIANG G Y, et al. Beamlike high-brightness source of polarization-entangled photon pairs[J]. Optics Le-tters, 2008, 33(9): 968-970. doi: 10.1364/OL.33.000968
[17] KIM T, FIORENTINO M, WONG F N C. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer[J]. Physical Review, 2006, A73(1): 012316.
[18] FUJⅡ G, NAMEKATA N, MOTOYA M, et al. Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-Ⅱ periodically poled lithium niobate waveguide[J]. Optics Express, 2007, 15(20): 12769-12776. doi: 10.1364/OE.15.012769
[19] HONJO T, TAKESUE H, INOUE K. Generation of energy-time entangled photon pairs in 1.5μm band with periodically poled lithium niobate waveguide[J]. Optics Express, 2007, 15(4): 1679-1683. doi: 10.1364/OE.15.001679
[20] MARTIN A, ISSAUTIER A, HERRMANN H, et al. A polarization entangled photon-pair source based on a type-Ⅱ PPLN waveguide emitting at a telecom wavelength[J]. New Journal of Physics, 2010, 12(10): 103005. doi: 10.1088/1367-2630/12/10/103005
[21] ECKSTEIN A, CHRIST A, MOSLEY P J, et al. Highly efficient single-pass source of pulsed single-mode twin beams of light[J]. Physical Review Letters, 2011, 106(1): 013603. doi: 10.1103/PhysRevLett.106.013603
[22] HARDER G, ANSARI V, BRECHT B, et al. An optimized photon pair source for quantum circuits[J]. Optics Express, 2013, 21(12): 13975-13985. doi: 10.1364/OE.21.013975
[23] MAIN P, MOSLEY P J, DING W, et al. Hybrid microfiber-lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources[J]. Physical Review, 2016, A94(6): 063844.
[24] ELKUS B S, ABDELSALAM K, RAO A, et al. Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides[J]. Optics Express, 2019, 27(26): 38521-38531. doi: 10.1364/OE.27.038521
[25] CHENG X, SARIHAN M C, CHANG K Ch, et al. Design of spontaneous parametric down-conversion in integrated hybrid SixNy-PPLN waveguides[J]. Optics Express, 2019, 27(21): 30773-30787. doi: 10.1364/OE.27.030773
[26] KUO P S, VERMA V B, WOO N S. Demonstration of a polarization-entangled photon-pair source based on phase-modulated PPLN[J]. OSA Continuum, 2020, 3(2): 295-304. doi: 10.1364/OSAC.387449
[27] ZHAO J, MA Ch, RUSING M, et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides[J]. Physical Review Letters, 2020, 124(16): 163603. doi: 10.1103/PhysRevLett.124.163603
[28] LIU Y C, GUO D, REN K Q, et al. Observation of frequency-uncorrelated photon pairs generated by counter-propagating spontaneous parametric down-conversion[J]. Scientific Reports, 2021, 11(1): 12628. doi: 10.1038/s41598-021-92141-y
[29] STEINLECHNER F, TROJEK P, JOFRE M, et al. A high-brightness source of polarization-entangled photons optimized for applications in free space[J]. Optics Express, 2012, 20(9): 9640-9649. doi: 10.1364/OE.20.009640
[30] LU Ch Y, ZHOU X Q, GVHNE O, et al. Experimental entanglement of six photons in graph states[J]. Nature Physics, 2007, 3(2): 91-95. doi: 10.1038/nphys507
[31] LU Ch Y, GAO W B, GVHNE O, et al. Demonstrating anyonic fractional statistics with a six-qubit quantum simulator[J]. Physical Review Letters, 2009, 102(3): 030502. doi: 10.1103/PhysRevLett.102.030502
[32] GAO W B, XU P, YAO X C, et al. Experimental realization of a controlled-not gate with four-photon six-qubit cluster states[J]. Physical Review Letters, 2010, 104(2): 020501. doi: 10.1103/PhysRevLett.104.020501
[33] GAO W B, LU Ch Y, YAO X C, et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state[J]. Nature Physics, 2010, 6(5): 331-335. doi: 10.1038/nphys1603
[34] HUANG Y F, LIU B H, PENG L, et al. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state[J]. Nature Communications, 2011(2): 546.
[35] YAO X C, WANG T X, XU P, et al. Observation of eight-photon entanglement[J]. Nature Photonics, 2012, 6(4): 225-228. doi: 10.1038/nphoton.2011.354
[36] ZHANG C, HUANG Y F, WANG Z, et al. Experimental Greenberger-Horne-Zeilinger-type six-photon quantum nonlocality[J]. Physical Review Letters, 2015, 115(26): 260402. doi: 10.1103/PhysRevLett.115.260402
[37] ZHANG C, HUANG Y F, ZHANG C J, et al. Generation and applications of an ultrahigh-fidelity four-photon Greenberger-Horne-Zeilinger state[J]. Optics Express, 2016, 24(24): 27059-27069. doi: 10.1364/OE.24.027059
[38] CHEN L K, LI Zh D, YAO X C, et al. Observation of ten-photon entanglement using thin BiB3O6 crystals[J]. Optica, 2017, 4(1): 77-83. doi: 10.1364/OPTICA.4.000077
[39] LIU X, HU J, LI Z F, et al. Heralded entanglement distribution between two absorptive quantum memories[J]. Nature, 2021, 594(7861): 41-45. doi: 10.1038/s41586-021-03505-3
[40] ROSSI A, VALLONE G, CHIURI A, et al. Multipath entanglement of two photons[J]. Physical Review Letters, 2009, 102(15): 153902. doi: 10.1103/PhysRevLett.102.153902
[41] HU X M, CHEN J Sh, LIU B H, et al. Experimental test of compatibility-loophole-free contextuality with spatially separated entangled qutrits[J]. Physical Review Letters, 2016, 117(17): 170403. doi: 10.1103/PhysRevLett.117.170403
[42] HU X M, XING W B, LIU B H, et al. Efficient generation of high-dimensional entanglement through multipath down-conversion[J]. Physical Review Letters, 2020, 125(9): 090503. doi: 10.1103/PhysRevLett.125.090503
[43] LI L, LIU Z X, REN X F, et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 2020, 368(6498): 1487-1490. doi: 10.1126/science.aba9779
[44] OU Z Y, LU Y J. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons[J]. Physical Review Letters, 1999, 83(13): 2556-2559. doi: 10.1103/PhysRevLett.83.2556
[45] LU Y J, OU Z Y. Optical parametric oscillator far below threshold: Experiment versus theory[J]. Physical Review, 2000, A62(3): 033804.
[46] WANG H B, HORIKIRI T, KOBAYASHI T. Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion[J]. Physical Review, 2004, A70(4): 043804.
[47] KUKLEWICZ C E, WONG F N, SHAPIRO J H. Time-bin-modulated biphotons from cavity-enhanced down-conversion[J]. Physical Review Letters, 2006, 97(22): 223601. doi: 10.1103/PhysRevLett.97.223601
[48] SCHOLZ M, KOCH L, BENSON O. Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion[J]. Physical Review Letters, 2009, 102(6): 063603. doi: 10.1103/PhysRevLett.102.063603
[49] SCHOLZ M, KOCH L, ULLMANN R, et al. Single-mode operation of a high-brightness narrow-band single-photon source[J]. Applied Physics Letters, 2009, 94(20): 201105. doi: 10.1063/1.3139768
[50] SCHOLZ M, WOLFGRAMM F, HERZOG U, et al. Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold[J]. Applied Physics Letters, 2007, 91(19): 191104. doi: 10.1063/1.2803761
[51] HAASE A, PIRO N, ESCHNER J, et al. Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction[J]. Optics Letters, 2009, 34(1): 55-57. doi: 10.1364/OL.34.000055
[52] BAO X H, QIAN Y, YANG J, et al. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories[J]. Physical Review Letters, 2008, 101(19): 190501. doi: 10.1103/PhysRevLett.101.190501
[53] YANG J, BAO X H, ZHANG H, et al. Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources[J]. Physical Review, 2009, A80(4): 042321.
[54] ZHANG H, JIN X M, YANG J, et al. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion[J]. Nature Photonics, 2011, 5(10): 628-632. doi: 10.1038/nphoton.2011.213
[55] DAI H N, ZHANG H, YANG Sh J, et al. Holographic storage of biphoton entanglement[J]. Physical Review Letters, 2012, 108(21): 210501. doi: 10.1103/PhysRevLett.108.210501
[56] ZHAO T M, ZHANG H, YANG J, et al. Entangling different-color photons via time-resolved measurement and active feed forward[J]. Physical Review Letters, 2014, 112(10): 103602. doi: 10.1103/PhysRevLett.112.103602
[57] PRAKASH V, BIANCHET L C, CUAIRAN M T, et al. Narrowband photon pairs with independent frequency tuning for quantum light-matter interactions[J]. Optics Express, 2019, 27(26): 38463-38478. doi: 10.1364/OE.382474
[58] POLYAKOV S V, MULLER A, FLAGG E B, et al. Coalescence of single photons emitted by disparate single-photon sources: The example of inas quantum dots and parametric down-conversion sources[J]. Physical Review Letters, 2011, 107(15): 157402. doi: 10.1103/PhysRevLett.107.157402
[59] SERI A, LENHARD A, RIELÄNDER D, et al. Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory[J]. Physical Review, 2017, X7(2): 021028.
[60] FEKETE J, RIELÄNDER D, CRISTIANI M, et al. Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks[J]. Physical Review Letters, 2013, 110(22): 220502. doi: 10.1103/PhysRevLett.110.220502
[61] MARING N, LAGO-RIVERA D, LENHARD A, et al. Quantum frequency conversion of memory-compatible single photons from 606nm to the telecom C-band[J]. Optica, 2018, 5(5): 507-513. doi: 10.1364/OPTICA.5.000507