[1] MEISTER S, FRANKE B, EICHLER H J, et al. Photonic integrated circuits for optical communication[J]. Optik & Photonik, 2012, 7(2):59-62.
[2] DOERR C R. Silicon photonic integration in telecommunications [J]. Frontiers in Physics, 2015, 3(1):1-16.
[3] THOMPSON M G, POLITI A, MATTHEWS J C F, et al. Integrated waveguide circuits for optical quantum computing [J]. IET Circuits, Devices & Systems, 2011, 5(2): 94-102.
[4] SMITH P G R, GATES J C, HOLMES C, et al. Fabrication of silica integrated waveguide circuits for quantum enhanced sensing, quantum information processing and number resolving detection [J]. Proceedings of the SPIE, 2015, 9370:1-6.
[5] GOBAN A, HUNG C L, YU S P, et al. Atom-light interactions in photonic crystals [J]. Nature Communication, 2014, 5(10):3808.
[6] JAGER M, BECHERER T, BRUNS J, et al. Antifouling coatings on SOI microring resonators for bio sensing applications [J]. Sensors and Actuators, 2016, B223(1):400-405.
[7] BARRIOS C A. Optical slot-waveguide based biochemical sensors [J]. Sensors, 2009, 9(6):4751-4765. doi: 10.3390/s90604751
[8] LUCHANSKY M S, WASHBURN A L, MARTIN T A, et al. Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform [J]. Biosens Bioelectron, 2010, 26(4): 1283-1291. doi: 10.1016/j.bios.2010.07.010
[9] MUKUNDAN H, ANDERSON A S, GRACE W K, et al. Waveguide-based biosensors for pathogen detection [J]. Sensors, 2009, 9(7): 5783-5809. doi: 10.3390/s90705783
[10] WERQUIN S, GOES A, DUBRUEL P, et al. Silicon-on-insulator microring resonators for photonic biosensing applications [J]. International Conference on Transparent Optical Networks, 2013, 9(6): 1-4.
[11] VAHALA K J. Optical microcavities [J]. Nature, 2003, 424(6950): 839-846. doi: 10.1038/nature01939
[12] CHEN X, LI C, TSANG H K. Device engineering for silicon photonics [J]. NPG Asia Material, 2011, 3(1): 34-40. doi: 10.1038/asiamat.2010.194
[13] DAI D X, BAUTERS J, BOWERS J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction [J]. Light Science & Applications, 2012, 16(81): 500-505.
[14] HUNSPERGER R G. Losses in optical waveguides, in integrated optics [M]. New York, USA: Springer-Verlag, 2009:107-127.
[15] GNAN M, THOMS S, MAcINTYRE D S, et al. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist [J]. Electronics Letters, 2008, 44(2):115-116. doi: 10.1049/el:20082985
[16] LEE K K, LIM D R, KIMERLING L C, et al. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction [J]. Optics Letters, 2001, 26(23): 1888-1890. doi: 10.1364/OL.26.001888
[17] PONT S C. Computer vision-surface roughness [M]. New York, USA: Springer Publishing Company, 2014: 781-782.
[18] LADOUCEUR F, LOVE J D, SENDEN T J. Measurement of surface roughness in buried channel waveguides [J]. Electronics Letters, 1992, 28(14): 1321-1232. doi: 10.1049/el:19920839
[19] DEGARMO E P, BLACK J T, KOHSER R A. Materials and processes in manufacturing [M]. 9th ed. Hoboken, New Jersey, USA: John Wiley & Sons, 2003: 223.
[20] MARCUSE D. Mode conversion caused by surface imperfections of a dielectric slab waveguide [J]. Bell System Technical Journal, 1969, 48(10): 3187-3215. doi: 10.1002/bltj.1969.48.issue-10
[21] TIEN P K. Light waves in thin films and integrated optics [J]. App-lied Optics, 1971, 10(11): 2395-2413.
[22] PAYNE F P, LACEY J P R. A theoretical analysis of scattering loss from planar optical waveguides [J]. Optical and Quantum Electronics, 1994, 26(10): 977-986. doi: 10.1007/BF00708339
[23] DERI R J, KAPON E, SCHIAVONE L M. Scattering in low-loss GaAs/AIGaAs rib waveguides [J]. Applied Physics Letters, 1987, 51(11): 789-791. doi: 10.1063/1.98867
[24] DERI R J, HAWKINS R J, KAPON E. Rib profile effects on scattering in semiconductor optical waveguides[J]. Applied Physics Letters, 1988, 53(16):1483-1485. doi: 10.1063/1.99972
[25] IBRAHIM M H, KASSIM N M, MOHAMMAD A B, et al. Rib sidewall scattering loss estimation for trapezoidal optical waveguide [J]. Optoelectronics and Advanced Materials, 2009, 3(9):917-920.
[26] KIM C M, JUNG B G, LEE C W. Analysis of dielectric rectangular waveguide by modified effective-index method [J]. Electronics Lett-ers, 1986, 22(6): 296-298. doi: 10.1049/el:19860202
[27] PENG W Q, WU Y L, LIU Y, et al. Scattering loss in optical waveguide with trapezoidal cross section [J]. Journal of Central South University of Technology, 2012, 19(5): 1317-1321. doi: 10.1007/s11771-012-1144-9
[28] JABERANSARY E T, MASAUD M B, MILOSEVIC M M, et al. Scattering loss estimation using 2-D fourier analysis and modeling of sidewall roughness on optical waveguides [J]. IEEE Photonics Journal, 2013, 5(3): 6601010. doi: 10.1109/JPHOT.2013.2251869
[29] ZHANG H, LI T, JIAN A Q, et al. Modeling and simulation of the effect of surface roughness on properties of silicon-on-insulator optical ring resonator coupled with a straight waveguide[J]. Optical Engineering, 2015, 54(12):125101. doi: 10.1117/1.OE.54.12.125101
[30] ALI S H R. Advanced nanomeasuring techniques for surface characterization [J]. ISRN Optics, 2012, 2012(1):1-23.
[31] BHUSHAN B. Surface roughness analysis and measurement techniques, in modern tribology handbook [M]. Boca Raton, USA: The Chernical Rubber Company Press LLC, 2000:Chapter 2 Section 3.
[32] WHITEHOUSE D. Surface and their measurement [M]. London, UK: Hermes Penton Science, 2002: 168-211.
[33] BINNIG G, ROHRER H, GERBER C, et al. Surface studies by scanning tunneling microscopy [J]. Physical Review Letters, 1982, 49(1): 57-61. doi: 10.1103/PhysRevLett.49.57
[34] BINNIG G, ROHRER H. Scanning tunneling microscopy [J]. Surface Science, 1983, 126(1): 236-244.
[35] BINNIG G, QUATE C F, GERBER C. Atomic force microscope [J]. Physical Review Letters, 1986, 56(9): 930-933. doi: 10.1103/PhysRevLett.56.930
[36] BRAGA P C, RICCI D. Atomic force microscope [M]. Totowa, New Jersey, USA: Humana Press Inc, 2004: 3-12.
[37] JANG J H, ZHAO W, BAE J W, et al. Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope [J]. Applied Physics Letters, 2003, 83(20): 4116-4118. doi: 10.1063/1.1627480
[38] MARTIN Y, WICKRAMASINGHE H K. Method for imaging sidewalls by atomic force microscopy [J]. Applied Physics Letters, 1994, 64(19): 2498-2500. doi: 10.1063/1.111578
[39] HOSOMI K, SHIRAI M, HIRUMA K, et al. AFM characterization of GaAs/AlGaAs waveguides [J]. IEICE Transactions on Electronics, 1996(11): 1579-1585.
[40] SUM T C, BETTIOL A A, SENG H L, et al. Direct measurement of proton-beam-written polymer optical waveguide sidewall morphology using an atomic force microscope [J]. Applied Physics Letters, 2004, 85(8): 1398-1400. doi: 10.1063/1.1784035
[41] PANDRAUD G, EDUARDO M B, YANG C K, et al. Experimental characterization of roughness induced scattering losses in pecvd sic waveguides [J]. Journal of Lightwave Technology, 2011, 29(5): 744-749. doi: 10.1109/JLT.2011.2108264
[42] PANI S K, WONG C C, SUDHARSANAM K, et al. Direct measurement of sidewall roughness of polymeric optical waveguides [J]. Applied Surface Science, 2005, 239(3): 445-450.
[43] WANG Y, LIN Z, ZHANG J, et al. Side-wall roughness in SOI rib waveguides fabricated by inductively coupled plasma reactive ion etching [J]. Applied Physics, 2004, B79(7): 879-881.
[44] WANG Y J, LIN Z L, ZHANG C S, et al. Integrated SOI rib waveguide using inductively coupled plasma reactive ion etching [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(1): 254-259. doi: 10.1109/JSTQE.2004.841464
[45] GAO F, WANG Y, CAO G, et al. Reduction of sidewall roughness in silicon-on-insulator rib waveguides [J]. Applied Surface Science, 2006, 252(14): 5071-5075. doi: 10.1016/j.apsusc.2005.07.070
[46] CHABLOZ M, SAKAI Y, MATSUURA T, et al. Improvement of sidewall roughness in deep silicon etching [J]. Microsystem Technologies, 2000, 6(3): 86-89. doi: 10.1007/s005420050003
[47] LIU H C, LIN Y H, HSU W. Sidewall roughness control in advanced silicon etch process [J]. Microsystem Technologies, 2003, 10(1): 29-34.
[48] ZHOU L B, LUO F G, CAO M C. Study of the plasma etching process for low-loss SiO2/Si optical waveguides [J]. Thin Solid Films, 2005, 489(1): 229-234.
[49] GNAN M, THOMS S, MAcINTYRE D S, et al. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist [J]. Electronics Letters, 2008, 44(2):115-116. doi: 10.1049/el:20082985
[50] AMIN T M F, HUDA M Q, TULIP J, et al. Sidewall roughness control in deep reactive ion etch process for micromachined Si devices [C]// Electrical and Computer Engineering (ICECE), 2012 7th International Conference. New York, USA: IEEE, 2012: 82-85.
[51] DEAL B E, GROVE A S. General relationship for the thermal oxidation of silicon [J]. Journal of Applied Physics, 1965, 36(12): 3770-3778. doi: 10.1063/1.1713945
[52] SUTARDJA P, OLDHAM W G. Modeling of stress effects in silicon oxidation [J]. IEEE Transactions on Electron Devices, 1989, 36(11): 2415-2421. doi: 10.1109/16.43661
[53] DEATON R, MASSOUD H Z. Manufacturability of rapid-thermal oxidation of silicon: oxide thickness, oxide thickness variation, and system dependency [J]. IEEE Transactions on Semiconductor Manufacturing, 1992, 5(4): 347-358. doi: 10.1109/66.175367
[54] MASSOUD H Z. The onset of the thermal oxidation of silicon from room temperature to 1000℃ [J]. Microelectronic Engineering, 1995, 28(1/4): 109-116.
[55] YAHATA A, URANO S, INOUE T, et al. Smoothing of Si trench sidewall surface by chemical dry etching and sacrificial oxidation [J]. Japanese Journal of Applied Physics, 1998, 37(7): 3954-3955.
[56] LEE K K, LIM D R, KIMERLING L C. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction [J]. Optics Letters, 2001, 26(23): 1888-1890. doi: 10.1364/OL.26.001888
[57] SPARACIN D K, SPECTOR S J, KIMERLING L C. Silicon waveguide sidewall smoothing by wet chemical oxidation [J]. Journal of Lightwave Technology, 2006, 23(8): 2455-2461.
[58] SHI Z J, SHAO S Q, WANG Y. Improved the surface roughness of silicon nanophotonic devices by thermal oxidation method [C]//3rd International Photonics & OptoElectronics Meetings (POEM 2010). New York, USA: IEEE, 2011: 12087-12093.
[59] NARA J, SASAKI T, OHNO T. Theory of adsorption and diffusion of Si adatoms on H/Si(100) stepped surface [J]. Journal of Crystal Growth, 1999, 201(1): 77-80.
[60] JEONG S, OSHIYAMA A. Complex diffusion mechanisms of a silicon adatom on hydrogenated Si(100) surfaces: on terraces and near steps [J]. Surface Science, 1999, 433(1): 481-485.
[61] KURIBAYASHI H, GOTOH M, HIRUTA R, et al. Observation of Si(100) surfaces annealed in hydrogen gas ambient by scanning tunneling microscopy [J]. Applied Surface Science, 2006, 252(15): 5275-5278. doi: 10.1016/j.apsusc.2005.12.043
[62] SHIMIZU R, KURIBAYASHI H, HIRUTA R, et al. Nano-scale morphology and hydrogenation of Si surfaces in the early phase of hydrogen annealing [J]. Journal of Physics: Conference Series, 2008, 100(1):1-4.
[63] MULLINS W W. Theory of thermal grooving [J]. Journal of Applied Physics, 1957, 28(3): 333-339. doi: 10.1063/1.1722742
[64] MORICEAU H, CARTIER A M, ASPAR B. Hydrogen annealing treatment used to obtain high quality SOI surfaces [C]// Proceedings 1998 IEEE International SOI Conference. New York, USA: IEEE, 1998: 37-38.
[65] LEE J W, LEE J Y, KIM S G, et al. Structural modification of a trench by hydrogen annealing [J]. Journal of the Korean Physical Society, 2000, 37(6): 1034-1039. doi: 10.3938/jkps.37.1034
[66] LEE M, CHANG M, WU M C. Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction [J]. Journal of Microelectromechanical Systems, 2006, 15(2): 338-343.
[67] ARMANI D K, KIPPENBERG T J, SPILLANE S M, et al. Ultra-high-Q toroid microcavity on a chip [J]. Nature, 2003, 421(6926): 925-928. doi: 10.1038/nature01371
[68] BOURELLE E, SUZUKI A, SATO A, et al. Sidewall polishing with a gas cluster ion beam for photonic device applications [J]. Nuclear Instruments and Methods in Physics Research, 2005, B241(1/4):622-625.
[69] HUNG S C, LIANG E Z, LIN C F. Silicon waveguide sidewall smoothing by KrF excimer laser reformation [J]. Journal of Lightwave Technology, 2009, 27(7): 887-892. doi: 10.1109/JLT.2008.923240
[70] FURY M A. The early days of CMP [J]. Solid State Technol, 1997, 40(5): 81-86.
[71] ALASAARELA T, KORN D, ALLOATTI L, et al. Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition [J]. Optics Express, 2011, 19(12): 11529-11538. doi: 10.1364/OE.19.011529