[1] LI J, ZHENG Y, DAI Y, et al. Ultralarge dispersion of microwave signals[C]//Conference on Lasers and Electro-Optics. California, USA: Applications & Technology, 2018: 62-67.
[2] LI J, DAI Y, YIN F, et al. Megahertz-resolution programmable microwave shaper[J]. Optics Letters, 2018, 43(8): 1878-1881. doi: 10.1364/OL.43.001878
[3] ZHANG W, ZHANG X, WANG C, et al. Optical computing optical coherence tomography with conjugate suppression by dispersion[J]. Optics Letters, 2019, 44(8): 2077-2080. doi: 10.1364/OL.44.002077
[4] ZHANG Y, ROBERTSON I D. Prediction of secondary dispersion for the design of dispersion-tailored microstructured fibers[J]. Journal of Lightwave Technology, 2010, 29(2): 135-145.
[5] SCHICKETANZ D W, EOLL C K. Material dispersion of graded-index fibers from numerical aperture measurements[J]. Applied Optics, 1990, 29(27): 3916-3920. doi: 10.1364/AO.29.003916
[6] SUN W J, DONG Ch. The mechanism of the electromagnetically induced transparency and the ultraslow speed of light[J]. Physics and Engineering, 2004, 14(4): 24-25(in Chinese).
[7] HSIAO S S, CHEN K T, YU I A. Mean field theory of weakly-interacting Rydberg polaritons in the EIT system based on the nearest-neighbor distribution[J]. Optics Express, 2020, 28(19): 28414-28429. doi: 10.1364/OE.401310
[8] THÉVENAZ L. Slow and fast light in optical fibres[J]. Nature Photonics, 2008, 2(8): 474-481. doi: 10.1038/nphoton.2008.147
[9] HAU L V, HARRIS S E, DUTTON Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594-598. doi: 10.1038/17561
[10] SAFAVI-NAEINI A H, ALEGRE T P M, CHAN J, et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 2011, 472(7341): 69-73. doi: 10.1038/nature09933
[11] WU Ch Q, YUAN B Zh. Slow light and all-optical buffers[J]. Physics, 2005, 34(12): 922-926(in Chinese).
[12] HENKE B L, GULLIKSON E M, DAVIS J C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E=50-30, 000eV, Z=1-92[J]. Atomic Data and Nuclear Data Tables, 1993, 54(2): 181-342. doi: 10.1006/adnd.1993.1013
[13] TIMOFEEV A S. Variants of the light pulses controlling under conditions of double radio-optical resonance[J]. IOP Publishing, 2014, 572(1): 012042.
[14] SAKAMOTO T, MORI T, YAMAMOTO T, et al. Transmission over large-core few-mode photonic crystal fiber using distance-independent modal dispersion compensation technique[J]. Optics Express, 2011, 19(26): 478-485. doi: 10.1364/OE.19.00B478
[15] SHEMIRANI M B, KAHN J M. Higher-order modal dispersion in graded-index multimode fiber[J]. Journal of Lightwave Technology, 2009, 27(23): 5461-5468. doi: 10.1109/JLT.2009.2030146
[16] CHEN G X, LU H M, CHEN Y, et al. Fundamentals of optical fiber communication technology[M]. Beijing: Higher Education Press, 2010: 20-50(in Chinese).
[17] DIEBOLD E D, HON N K, TAN Z, et al. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide[J]. Optics Express, 2011, 19(24): 23809-23817. doi: 10.1364/OE.19.023809
[18] ZHU Y, GREENBERG J A, HUSEIN N A, et al. Giant all-optical tunable group velocity dispersion in an optical fiber[J]. Optics Express, 2014, 22(12): 14382-14391. doi: 10.1364/OE.22.014382
[19] LIAO R, HON N K, BUCKLEY B W, et al. Chromo-modal dispersion for optical communication and time-stretch spectroscopy[J]. Optics Letters, 2021, 46(3): 500-503. doi: 10.1364/OL.410666
[20] TAN Zh W, QIN F J, REN W H, et al. Application of fiber dispersion in all optical data processing[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080023(in Chinese).
[21] GAMBLING W A, PAYNE D N, MATSUMURA H. Mode conversion coefficients in optical fibers[J]. Applied Optics, 1975, 14(7): 1538-1542. doi: 10.1364/AO.14.001538
[22] GLOGE D. Optical power flow in multimode fibers[J]. Bell System Technical Journal, 1972, 51(8): 1767-1783. doi: 10.1002/j.1538-7305.1972.tb02682.x
[23] WANG X. Research on the key technology and implementation of wideband digital receiver[D]. Harbin: Harbin Engineering University, 2008: 13-37(in Chinese).
[24] LIANG Y H. Research on photonic-assisted compressive sampling technique [D]. Beijing : Tsinghua University, 2014: 12-40(in Chinese).
[25] ZHOU J, FU S, SHUM P P, et al. Photonic measurement of microwave frequency based on phase modulation[J]. Optics Express, 2009, 17(9): 7217-7221. doi: 10.1364/OE.17.007217
[26] DIDDAMS S A, HOLLBERG L, MBELE V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb[J]. Nature, 2007, 445(7128): 627-630. doi: 10.1038/nature05524
[27] CHATELLUS H G D, CORTÉS L R, AZAñA J. Optical real-time Fourier transformation with kilohertz resolutions[J]. Optica, 2016, 3(1): 1-8. doi: 10.1364/OPTICA.3.000001
[28] DAI Y, LI J, ZHANG Z, et al. Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion[J]. Optics Express, 2017, 25(14): 16660-16671. doi: 10.1364/OE.25.016660
[29] ZHENG Y, LI J, DAI Y, et al. Real-time Fourier transformation based on the bandwidth magnification of RF signals[J]. Optics Le-tters, 2018, 43(2): 194-197. doi: 10.1364/OL.43.000194
[30] DAS R, SCHNEIDER T. Integrated group delay units for real-time reconfigurable spectrum sensing of mm-wave signals[J]. Optics Le-tters, 2020, 45(17): 4778-4781. doi: 10.1364/OL.396038
[31] JANNSON T. Real-time Fourier transformation in dispersive optical fibers[J]. Optics Letters, 1983, 8(4): 232-234. doi: 10.1364/OL.8.000232
[32] GODA K, JALALI B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112. doi: 10.1038/nphoton.2012.359
[33] XU Y, WEI X, REN Z, et al. Ultrafast measurements of optical spectral coherence by single-shot time-stretch interferometry[J]. Scientific Reports, 2016, 6: 27937. doi: 10.1038/srep27937
[34] SAPERSTEIN R E, PANASENKO D, FAINMAN Y. Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber[J]. Optics Letters, 2004, 29(5): 501-503. doi: 10.1364/OL.29.000501
[35] DUAN Y, CHEN L, ZHOU H, et al. Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification[J]. Optics Express, 2017, 25(7): 7520-7529. doi: 10.1364/OE.25.007520
[36] GODA K, SOLLI D R, TSIA K K, et al. Theory of amplified dispersive Fourier transformation[J]. Physical Review, 2009, A80(4): 043821.
[37] SOLLI D R, CHOU J, JALALI B. Amplified wavelength-time transformation for real-time spectroscopy[J]. Nature Photonics, 2008, 2(1): 48-51. doi: 10.1038/nphoton.2007.253
[38] KONG M L, TAN Zh W, ZHANG L. Application and implementation of optical fourier transform based on optical fiber[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110701(in Chinese).
[39] SALEM R, FOSTER M A, GAETA A L. Application of space-time duality to ultrahigh-speed optical signal processing[J]. Advances in Optics and Photonics, 2013, 5(3): 274-317. doi: 10.1364/AOP.5.000274
[40] GODA K, JALALI B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112. doi: 10.1038/nphoton.2012.359
[41] TONG Y C, CHAN L Y, TSANG H K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope[J]. Electronics Letters, 1997, 33(11): 983-985. doi: 10.1049/el:19970663
[42] MURIEL M A, AZAñA J, CARBALLAR A. Real-time Fourier transformer based on fiber gratings[J]. Optics Letters, 1999, 24(1): 1-3. doi: 10.1364/OL.24.000001
[43] HILL K O, MELTZ G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 1997, 15(8): 1263-1276. doi: 10.1109/50.618320
[44] WANG L, YAN F P, LI Y F, et al. Optimization of chirped fiber Bragg gratings by asymmetrically apodization method[J]. Acta Optica Sinica, 2007, 27(4): 587-592(in Chinese).
[45] van HAOWE J, XU C. Ultrafast optical signal processing based upon space-time dualities[J]. Journal of Lightwave Technology, 2006, 24(7): 2649-2662. doi: 10.1109/JLT.2006.875229
[46] ZHENG Y. Real-time Fourier transformation based on bandwidth magnification[D]. Beijing : Beijing University of Posts and Telecommunications, 2019: 10-15(in Chinese).