[1] ZHANG B, SONG Sh H, WANG H J, et al. A novel micro-ring-based 4×4 non-blocking silicon optical router[J]. Laser Technology, 2013, 37(6):731-735 (in Chinese).
[2] BROUCKAERT J, BOGAERTS W, DUMON P, et al. Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform [J]. Journal of Lightwave Technology, 2007, 25(5): 1053-1060.
[3] CHOWDHURY D. Design of low-loss and polarization-insensitive reflection grating-based planar demultiplexers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(2): 233-239. doi: 10.1109/2944.847758
[4] FENG D, QIAN W, LIANG H, et al. Fabrication intensive echelle grating in silicon-on-insulator platform [J]. IEEE Photonics Technology Letters, 2011, 23(5): 284-287.
[5] ZOU J, JIANG X X, XIA X, et al. Ultra-compact birefringence-compensated arrayed waveguide grating triplexer based on silicon-on-insulator [J]. Journal of Lightwave Technology, 2013, 31(12): 1935-1940. doi: 10.1109/JLT.2013.2261857
[6] WANG J, SHENG Z, LI L, et al. Low-loss and low-crosstalk 8×8 silicon nanowire AWG routers fabricated with CMOS technology [J]. Optics Express, 2014, 22(8): 9395-9403. doi: 10.1364/OE.22.009395
[7] YE T, FU Y, QIAO L, et al. Low-crosstalk Si arrayed waveguide grating with parabolic tapers [J]. Optics Express, 2014, 22(26): 31899-31906. doi: 10.1364/OE.22.031899
[8] ZHENG X Z, SHUBIN I, LI G L, et al. A tunable 1×4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects [J]. Optics Express, 2010, 18(13): 5151-5160.
[9] FANG Q, PHANG Y T, TAN C W, et al. Multi-channel silicon photonic receiver based on ring-resonators [J]. Optics Express, 2010, 18(13): 13510-13515. doi: 10.1364/OE.18.013510
[10] HORST F, GREEN W M J, ASSEFA S, et al. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing [J]. Optics Express, 2013, 21(10): 11652-11658. doi: 10.1364/OE.21.011652
[11] JEONG S, TANAKA S, AKIYAMA T, et al. Flat-topped and low loss silicon-nanowire-type optical MUX/DeMUX employing multi-stage microring resonator assisted delayed Mach-Zehnder interferometers [J]. Optics Express, 2012, 20(23): 26000-26011. doi: 10.1364/OE.20.026000
[12] AN J M, ZHANG J S, WANG Y, et al. Study on wavelength division multiplexer for silicon photonics [J]. Laser & Optoelectronics Progress, 2014, 51(11):110006 (in Chinese).
[13] DENOYER G, COLE C, SANTIPO A, et al. Hybrid silicon photonic circuits and transceiver for 50Gb/s NRZ transmission over single-mode fiber [J]. Journal of Lightwave Technology, 2015, 33(6): 1247-1254. doi: 10.1109/JLT.2015.2397315
[14] TORRES-FERRERA P, PACHECO-RAMÍREZ L, GUTIÉRREZ-CASTREJÓN R, et al. Next-generation 400Gb/s ethernet PMD over SMF at 1310nm via DD-OFDM with electro-absorption modulator-based transmitters [C]//2015 7th IEEE Latin-American Conference on Communications. New York, USA: IEEE, 2015: 1-6.
[15] STRESHINSKY M, DING R, LIU Y, et al. Low power 50Gb/s silicon traveling wave Mach-Zehnder modulator near 1300nm [J]. Optics Express, 2013, 21(25): 30350-30357. doi: 10.1364/OE.21.030350
[16] SHENG Z Y, HE S L, HE J J. 1-Stigma and 2-stigma method for the design of etched diffract ion grating [J]. Journal of Optoelectronics·Laser, 2001, 12(7): 671-674 (in Chinese).
[17] BROUCKAERT J, BOGAERTS W, SELVARAJA S, et al. Planar concave grating demultiplexer with high reflective Bragg reflector facets [J]. IEEE Photonics Technology Letters, 2008, 20(4): 309-311. doi: 10.1109/LPT.2007.915585
[18] SHENG Zh Y, HE S L, HE J J. Simulation for etching diffraction grating by use of scalar diffraction theory [J]. Opto-Electronic Engineering, 2001, 28(6): 29-32(in Chinese).