[1] ZHANG F P, XUE H Zh, HU Y Zh, et al. Coherent Doppler wind lidar[J]. Journal of Applied Optics, 2009, 30(6):1045-1050 (in Chinese).
[2] LIU L L, YANG J, HUANG J, et al. Analysis of SO2 and NO2 concentration profiles in Huainan detected by a lidar[J]. Laser Technology, 2019, 43(3):353-358(in Chinese).
[3] KAVAYA M J, FREHLICH R G. Parameter trade studies for coherent lidar measurements of wind from space[J]. Proceedings of the SPIE, 2007, 6681: 668109. doi: 10.1117/12.737429
[4] KARLSSON C J, OLSSON F A, LETALICK D, et al. All-fiber multifunction continuous-wave coherent laser radar at 1.55μm for range, speed, vibration, and wind measurements[J]. Applied Optics, 2000, 39(21): 3716-3726. doi: 10.1364/AO.39.003716
[5] KAMEYANMA S, ANDO T, ASAKA K, et al. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing[J]. Applied Optics, 2007, 46(11): 1953-1962. doi: 10.1364/AO.46.001953
[6] WANG Y Q, BAO Y, NAN S L. Dynamic and thermodynamic effects on climate changes over the Qinghai-Tibetan Plateau in response to global warming[J]. Plateau Meteorology, 2019, 38(1): 29-41(in Chinese).
[7] DAI Y F, WANG H, LI D L. Characteristics of surface sensible heat flux calculated from satellite remote sensing and field observations in the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(5): 1009-1021(in Chinese).
[8] HU Q, JIANG D B, FAN G Zh. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 924-938(in Chinese).
[9] ZHOU T J, LI L J, LI H M, et al. Progress in climate change attribution and projection studies[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 906-922(in Chinese).
[10] HANNON S M. Autonomous infrared doppler radar:Airport surveillance applications[J]. Physics & Chemistry of the Earth Part, 2000, B25(10/12): 1005-1011.
[11] HANNON S M, THOMSON J A L, HENDERSON S W, et al. Windshear, turbulence, and wake vortex characterization using pulsed solid state coherent lidar[J]. Proceedings of the SPIE, 1995, 2464: 94-102. doi: 10.1117/12.211480
[12] DOLFI-BOUTEYRE A, CANAT G, VALLA M, et al. Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 441-450. doi: 10.1109/JSTQE.2008.2010463
[13] SMALIKHO I N, BANAKH V A. Estimation of aircraft wake vortex parameters from data measured with a 1.5μm coherent Doppler lidar[J]. Optics Letters, 2015, 40(14): 3408-3413. doi: 10.1364/OL.40.003408
[14] SHUN C M, CHAN P W. Applications of an infrared doppler lidar in detection of wind shear[J]. Journal of Atmospheric & Oceanic Technology, 2007, 25(5): 637-645.
[15] HAVERDINGS H, CHAN P W. Quick access recorder (QAR) data analysis software for windshear and turbulence studies[J]. Journal of Aircraft, 2010, 47(4): 1443-1447. doi: 10.2514/1.46954
[16] CHAN P W, LEE Y F. Application of a ground-based, multi-channel microwave radiometer to the alerting of low-level windshear at an airport[J]. Meteorologische Zeitschrift, 2011, 20(4): 423-429. doi: 10.1127/0941-2948/2011/0275
[17] JIANG L H, YAN Y, XIONG X L, et al. Doppler lidar alerting algorithm of low-level wind shear based on ramps detection[J]. Infrared and Laser Engineering, 2016, 45(1): 010600(in Chinese).
[18] FAN Q, ZHU K Y, ZHENG J F, et al. Detection performance analysis of all-fiber coherent wind lidar under different weather types[J]. Chinese Journal of Lasers, 2017, 44(22): 0210003(in Chinese).
[19] HU M B, TAN Sh Q, TANG D Zh, et al. A study on the method for detection low-level wind shear over airport with single Doppler radar[J]. Journal of Nanjing Institute of Meteorology, 2000, 23(1): 113-118(in Chinese).
[20] LI C, ZHOU J, LUO X, et al. Technical research of a 3-D wind lidar[J]. Laser Technology, 2017, 41(5): 703-707(in Chinese).