[1] ZHAN Q W. Cylindrical vector beams: From mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57. doi: 10.1364/AOP.1.000001
[2] ROSALES-GUZMAN C, NDAGANO B, FORBES A, et al. A review of complex vector light fields and their applications[J]. Journal of Optics (United Kingdom), 2018, 20(12): 123001.
[3] WANG X L, DING J P, NI W J, et al. Generation of arbitrary vector beams with a spatial light modulator[J]. Optics Letters, 32(24): 3549-3551. doi: 10.1364/OL.32.003549
[4] MAURER C, JESACHER A, FÜRHAPTER S, et al. Tailoring of arbitrary optical vector beams[J]. New Journal of Physics, 2007, 9(3): 78. doi: 10.1088/1367-2630/9/3/078
[5] LIU J Q, WANG J M, HE Ch J, et al. Research on the generation of Ince-Gaussian vector optical field[J]. Acta Optica Sinica, 2019, 39(8): 0826001(in Chinese). doi: 10.3788/AOS201939.0826001
[6] HAN W, YANG Y F, CHENG W, et al. Vectorial optical field ge-nerator for the creation of arbitrarily complex fields[J]. Optics Express, 2013, 21(18): 20692-20706. doi: 10.1364/OE.21.020692
[7] BIENER G, NIV A, KLEINER V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Le-tters, 2002, 27(21): 1875-1877. doi: 10.1364/OL.27.001875
[8] MARRUCCI L, MANZO C, PAPARO D, et al. Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: Switchable helical modes generation[J]. Applied Physics Letters, 2006, 88(22): 221102. doi: 10.1063/1.2207993
[9] BOUCHARD F, MAND H, MIRHOSSEINI M, et al. Achromatic orbital angular momentum generator[J]. New Journal of Physics, 2014, 16(12): 123006. doi: 10.1088/1367-2630/16/12/123006
[10] DEVLIN R C, AMBROSIO A, RUBIN N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896-900. doi: 10.1126/science.aao5392
[11] KONG F Q, ZHANG CH M, BOUCHARD F, et al. Controlling the orbital angular momentum of high harmonic vortices[J]. Nature Communications, 2017, 8(10): 14970.
[12] ANDREA R, FILIPPO C, BRUNO P, et al. Q-plate technology: A progress review[Invited][J]. Journal of the Optical Society of America, 2019, B36(5): 70-87.
[13] BOMZON Z, BIENER G, KLEINER V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143. doi: 10.1364/OL.27.001141
[14] BOMZON Z, BIENER G, KLEINER V, et al. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings[J]. Optics Letters, 2002, 27(5): 285-287. doi: 10.1364/OL.27.000285
[15] PAPARO D, MANZO C, MARRUCCI L, et al. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905
[16] SLUSSARENKO S, MURAUSKI A, TAO D, et al. Tunable liquid crystal q-plates with arbitrary topological charge[J]. Optics Express, 2011, 19(5): 4085-4090. doi: 10.1364/OE.19.004085
[17] CARDANO F, KARIMI E, SLUSSARENKO S, et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges[J]. Applied Optics, 2012, 51(10): C1-C6. doi: 10.1364/AO.51.0000C1
[18] DARRYL N, FILIPPUS S R, ANGELA D, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 2016, 10(5): 327-332. doi: 10.1038/nphoton.2016.37
[19] ZHANG Y J, GAO Sh H, SONG X, et al. Preparation and characteristics of large aperture liquid crystal q wave-plates[J]. Laser Technology, 2019, 43(4): 442-447(in Chinese).
[20] JIANG J J, ZHANG D Y, LI J F, et al. Liquid crystal variable retarder development and electric-control retardation measurement[J]. Laser Technology, 2011, 35(5): 652-655(in Chinese).
[21] LI K W, WANG ZH B, YANG CH Q, et al. A new technique of full polarization hyperspectral imaging based on acousto-optic tunable filter and liquid crystal variable retarder[J]. Acta Physica Sinica, 2015, 64(14): 140702(in Chinese). doi: 10.7498/aps.64.140702
[22] XU C, MA J, KE C, et al. Full-Stokes polarization imaging based on liquid crystal variable retarders and metallic nanograting arrays[J]. Journal of Physics, 2019, D53(1): 015112.