[1] QI Y F, LI Y. Integrated lithium niobate photonics [J]. Nanophotonics-Berlin, 2020, 9(6): 1287-1320. doi: 10.1515/nanoph-2020-0013
[2] MARTIN A, ISSAUTIER A, LABONTE L, et al. A polarization entangled photon-pair source based on a type-Ⅱ PPLN waveguide emitting at a telecom wavelength[J]. New Journal of Physics, 2010, 12(10): 103005. doi: 10.1088/1367-2630/12/10/103005
[3] TANZILLI S, RIEDMATTEN H D, TITTEL H, et al. Highly efficient photon-pair source using a periodically poled lithium niobate waveguide[J]. Electronics Letters, 2001, 37(1): 26-28. doi: 10.1049/el:20010009
[4] SOHLER W W, GRUNDKÖTTER W, HERRMANN H H, et al. All-optical signal processing devices with (periodically poled) lithium niobate waveguides[EB/OL]. (2020-12-14)[2021-10-17]. https://pure.tue.nl/ws/files/1937326/Metis207165.pdf.
[5] RAMESH K, JOYEE G. Parametric down-conversion in PPLN ridge waveguide: A quantum analysis for efficient twin photons generation at 1550nm[J]. Journal of Optics, 2018, 20(7): 075202. doi: 10.1088/2040-8986/aac7da
[6] RABIEI P, STEIER W H. Lithium niobate ridge waveguides and modulators fabricated using smart guide[J]. Applied Physics Letters, 2005, 86(16): 161115. doi: 10.1063/1.1906311
[7] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser Photonics Reviews, 2012, 6(4): 488-503. doi: 10.1002/lpor.201100035
[8] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator [J]. Optica, 2017, 4(12): 1536-1537. doi: 10.1364/OPTICA.4.001536
[9] ZHOU J X, GAO R H, LIN J, et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching[J]. Chinese Physics Letters, 2020, 37(8): 084201. doi: 10.1088/0256-307X/37/8/084201
[10] KURZKE H, KIETHE J, HEUER A, et al. Frequency doubling of incoherent light from a superluminescent diode in a periodically poled lithium niobate waveguide crystal [J]. Laser Physics Letters, 2017, 14(5): 055402. doi: 10.1088/1612-202X/aa6889
[11] ALIBART O, D'AURIA V, DE MICHELI M, et al. Quantum photonics at telecom wavelengths based on lithium niobate waveguides [J]. Journal of Optics, 2016, 18(10): 104001. doi: 10.1088/2040-8978/18/10/104001
[12] TANZILLI S, TITTEL W, de RIEDMATTEN H, et al. PPLN waveguide for quantum communication [J]. The European Physical Journal, 2002, D18(2): 155-160.
[13] HERRMANN H, YANG X, THOMAS A, et al. Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs [J]. Optics Express, 2013, 21(23): 27981-27991. doi: 10.1364/OE.21.027981
[14] ANTONOSYAN D, SOLNTSEV A, SUKHORUKOV A. Photon-pair generation in a quadratically nonlinear parity-time symmetric coupler [J]. Photonics Research, 2018, 6(4): A6-A9. doi: 10.1364/PRJ.6.0000A6
[15] MING Y, TAN A H, WU Z J, et al. Tailoring entanglement through domain engineering in a lithium niobate waveguide[J]. Scientific Reports, 2014, 4(1): 4812.
[16] JIN H, LIU F, XU P, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J]. Physical Review Letters, 2014, 113(10): 103601. doi: 10.1103/PhysRevLett.113.103601
[17] SUN Ch W, WU S H, DUAN J Ch, et al. Polarization entanglement source based on titanium diffused lithium oxide waveguide[C]//Abstracts of the 18th National Quantum Optics Academic Conference. Zhangjiajie: Chinese Physical Society, 2018: 013908(in Chinese).
[18] DUAN J Ch, XU P, GONG Y X, et al. Wide tuning high quality identical photon pair based on lithium niobate optical quantum chip [C]//Abstracts of the 18th National Quantum Optics Academic Conference. Zhangjiajie: Chinese Physical Society, 2018: 013834(in Chinese).
[19] CHENG X, SARIHAN M C, CHANG K C, et al. Design of spontaneous parametric down conversion in integrated hybrid SixNy-PPLN waveguides [J]. Optics Express, 2019, 27(21): 30773-30787. doi: 10.1364/OE.27.030773
[20] ZHAO J, MA C X, RUSING M, et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides[J]. Physical Review Letters, 2020, 124(16): 163603. doi: 10.1103/PhysRevLett.124.163603
[21] FLEISCHHAUER M, LUKIN M D. Dark-state polaritons in electromagnetically induced transparency[J]. Physical Review Letters, 2000, 84(22): 5094-5097. doi: 10.1103/PhysRevLett.84.5094
[22] ASKARANI M F, PUIGIBERT M L G, LUTZ T, et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide[J]. Physical Review Applied, 2019, 11(5): 054056. doi: 10.1103/PhysRevApplied.11.054056
[23] DUTTA S, GOLDSCHMIDT E A, BARIK S, et al. Integrated photonic platform for rare-earth ions in thin film lithium niobate [J]. Nano Letters, 2020, 20(1): 741-747. doi: 10.1021/acs.nanolett.9b04679
[24] SHANDONG INSTITUTE OF QUANTUM SCIENCE AND TECHNOLOGY CO. LTD. Periodically polarized lithium niobate waveguide device based on double ended fiber coupling: CN 201420423090.0 [P]. 2014-12-03(in Chinese).
[25] XIANG T, SUN Q C, LI Y H, et al. Single-photon frequency conversion via cascaded quadratic nonlinear processes [J]. Physical Review, 2018, A97(6): 063810.
[26] WANG C, LANGROCK C, MARANDI A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 2018, 5(11): 1438. doi: 10.1364/OPTICA.5.001438
[27] ALBOTA M A, WONG F N. Efficient single-photon counting at 1.55 microm by means of frequency up conversion [J]. Optics Letters, 2004, 29(13): 1449-1151. doi: 10.1364/OL.29.001449
[28] LANGROCK C, KURZ J R, FEJER M M, et al. Periodically poled lithi-um niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths [J]. Optics Letters, 2004, 29(13): 1518-1520. doi: 10.1364/OL.29.001518
[29] KAMADA H, ASOBE M, HONJO T, et al. Efficient and low-noise single-photon detec-tion in 1550nm communication band by frequency up conversion in periodi-cally poled NiNbO3 waveguides[J]. Optics Letters, 2008, 33(7): 639-641. doi: 10.1364/OL.33.000639
[30] ANON. The world's first commercial prototype of up conversion single photon detector has been successfully developed in China [J]. Sensor World, 2014, 20 (12): 44(in Chinese).
[31] SHANDONG INSTITUTE OF QUANTUM SCIENCE AND TECHNOLOGY CO. LTD. Institute of advanced technology. University of science and technology of China. High efficiency near infrared up conversion single photon detector based on all fiber devices: CN 201520097422.5 [P]. 2015-06-17(in Chinese).
[32] LIANG L Y, LIANG J S, YAO Q, et al. Compact all-fiber polarization-independent up-conversion single-photon detector [J]. Optics Communications, 2019, 441: 185-189. doi: 10.1016/j.optcom.2019.02.057
[33] YAO N, YAO Q, XIE X P, et al. Optimizing up-conversion single-photon detectors for quantum key distribution [J]. Optics Express, 2020, 28(17): 25123-25133. doi: 10.1364/OE.397767
[34] ALSAYEM A, CHENG R S, WANG S H, et al. Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors [J]. Applied Physics Letters, 2020, 116(15): 151102. doi: 10.1063/1.5142852
[35] LENZINI F, JANOUSEK J, THEARLE O, et al. Integrated photonic platform for quantum information with continuous variables [J]. Science Advances, 2018, 4(12): 9331-9338. doi: 10.1126/sciadv.aat9331
[36] ZHANG Q Y, XUE G T, XU P, et al. Manipulation of tripartite frequency correlation under extended phase matchings [J]. Physical Review, 2018, A97(2): 022327.
[37] ZHANG M, BUSCAINO B, WANG Ch, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377. doi: 10.1038/s41586-019-1008-7
[38] WU J F, HUANG Y W, LU C Y, et al. Tunable linear polarization-state generator of single photons on a lithium niobate chip [J]. Physical Review Applied, 2020, 13(6): 064068. doi: 10.1103/PhysRevApplied.13.064068