[1] TAN Zh W, YANG Ch Ch, WANG Z Y. Energy consume analysis for ring-topology TWDM-PON front-haul enabled cloud RAN[J]. Journal of Lightwave Technology, 2017, 35(20): 4526-4534. doi: 10.1109/JLT.2017.2745998
[2] 陈龙辉, 谢芳, 郭晓蕾, 等. 可调谐单纵模多波长光纤激光器的研究[J]. 激光技术, 2021, 45(6): 681-685.CHEN L H, XIE F, GUO X L, et al. Research on tunable single-longitudinal mode multi-wavelength fiber lasers[J]. Laser Technology, 2021, 45(6): 681-685(in Chinese).
[3] ZHANG Z G, CHEN Y X, CAI S Y, et al. Colorless-light and tunable-light-source schemes for TWDM and WDM PONs[J]. IEEE Communications Magazine, 2018, 56(8): 120-128. doi: 10.1109/MCOM.2018.1700751
[4] DU L B, ZHAO X J, YIN Sh, et al. Long-reach wavelength-routed TWDM PON: Technology and deployment[J]. Journal of Lightwave Technology, 2019, 37(3) : 688-697. doi: 10.1109/JLT.2018.2850343
[5] CHENG N, GAO J H, XU Ch Z, et al. Flexible TWDM PON system with pluggable optical transceiver modules[J]. Optics Express, 2014, 22(2): 2078-2091. doi: 10.1364/OE.22.002078
[6] YANG H Y, SUN W Q, LI J, et al. Energy efficient TWDM multi-PON system with wavelength relocation[J]. Journal of Optical Communications and Networking, 2014, 6(6): 571-577. doi: 10.1364/JOCN.6.000571
[7] WU B, YIN H X, QIN J, et al. Design and implementation of flexible TWDM-PON with PtP WDM overlay based on WSS for next-gene-ration optical access networks[J]. Modern Physics Letters, 2016, B30(25): 1650324.
[8] 刘源. 波长固定和可调激光器组合的TWDM-PON系统研究[D]. 上海: 上海交通大学, 2016: 37-44.LIU Y. Research on TWDM-PON system combining fixed wavelength and tunable lasers[D]. Shanghai: Shanghai Jiao Tong University, 2016: 37-44(in Chinese).
[9] BINDHAIQ S, ZULKIFLI N, SUPA'AT A, et al. Power budget improvement of symmetric 40 Gb/s TWDM based PON2 system utilizing DMLs and DCF technique[J]. Optics Communications, 2018, 407: 153-164. doi: 10.1016/j.optcom.2017.09.027
[10] PAN H. Nokia and ooredoo qatar achieve 40 Gbps with next-generation TWDM-PON fiber technology[J]. Fiber Optics & Communications, 2017, 40(1): 1-2.
[11] LIANG G, ZHENG G, ZENG Zh, et al. Assessing the relative contributions of the flood tide and the ebb tide to tidal channel network dynamics[J]. Earth Surface Processes and Landforms, 2020, 45(1): 237-250. doi: 10.1002/esp.4727
[12] SEMANTIC SCHOLAR. C-RAN the road towards green RAN[EB/OL]. (2014-06-13)[2022-12-19]. https://www.semanticscho-lar.org/paper/C-ran-the-Road-towards-Green-Ran/eaa3ca62c9d5653e4f2318aed9ddb8992a505d3c.
[13] 徐赟昊. TWDM-PON系统架构方案及上行波长带宽分配算法的研究与应用[D]. 南京: 南京邮电大学, 2017: 35-36.XU Y H. Research and application on TWDM-PON system architecture and upstream dynamic wavelength resource allocation algorithm[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017: 35-36(in Chinese).
[14] SONAM K, NEELAM T, NAVDEEP K. A practical approach to energy consumption in wireless sensor networks[J]. International Journal of Advanced Intelligence Paradigms, 2020, 16(2): 190-202. doi: 10.1504/IJAIP.2020.107016
[15] PARKIRTI, KAUR R, SINGH R. Cost-efficient co-lorless WDM PON based on RSOA for high capacity[J]. International Journal of Advanced Research in Computer Engineering and Technology, 2016, 5(7): 3-4.
[16] 柯熙政, 梁静远, 许东升, 等. 无线光通信类脉冲位置调制技术研究进展[J]. 光电工程, 2022, 49(3): 210387.KE X Zh, LIANG J Y, XU D Sh, et al. Research progress of pulse position modulation technology in optical wireless communication[J]. Opto-Electro Engineering, 2022, 49(3): 210387(in Chin-ese).
[17] WANG D S, XU Y L, LI J Q, et al. Comprehensive eye diagram analysis: A transfer learning approach[J]. IEEE Photonics Journal, 2019, 11(6): 1-19.
[18] SARMIENTO S, ALTABAS J, SPADARO S, et al. Experimental assessment of 10 Gbps 5G multicarrier waveforms for high-layer split U-DWDM-PON-based fronthaul[J]. Journal of Lightwave Technology, 2019, 37(10): 2344-2351. doi: 10.1109/JLT.2019.2904114
[19] YOSHIDA T, ALVARADO A, KARLSSON M, et al. Post-FEC BER benchmarking for bit-interleaved coded modulation with probabilistic shaping[J]. Journal of Lightwave Technology, 2020, 38(16): 4292-4306. doi: 10.1109/JLT.2020.2990620
[20] HASHIMOTO R, YAMAOKA S, MORI Y, et al. First demonstration of subsystem-modular optical cross-connect using single-module 6×6 wavelength-selective switch[J]. Journal of Lightwave Technology, 2018, 36(7): 1435-1442. doi: 10.1109/JLT.2018.2800082
[21] WAN J, YUAN W Z, CHEN Y J, et al. 1×5 microfluidic optical switch using double drives[J]. Journal of Modern Optics, 2021, 68(21): 1251-1258. doi: 10.1080/09500340.2021.1987539
[22] LIU G L, ZHANG Zh Y, SHAO J B, et al. The application of the transient optical switch based on gradient organic heterojunctions[J]. Plasmonics, 2019, 14(6): 1405-1410. doi: 10.1007/s11468-019-00924-x
[23] MA Y, STEWART L, ARMSTRONG J, et al. Recent progress of wavelength selective switch[J]. Journal of Lightwave Technolog, 2021, 39(4): 896-903. doi: 10.1109/JLT.2020.3022375