[1] ZHONG H S, WANG H, DENG Y HAO, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463. doi: 10.1126/science.abe8770
[2] BRIEGEL H J, DVR W, CIRAC J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication[J]. Physical Review Letters, 1998, 81(26): 5932-5935. doi: 10.1103/PhysRevLett.81.5932
[3] SPECHT H P, NÖLLEKE C, REISERER A, et al. A single-atom quantum memory[J]. Nature, 2011, 473(7346): 190-193. doi: 10.1038/nature09997
[4] BLATT R, WINELAND D. Entangled states of trapped atomic ions[J]. Nature, 2008, 453(7198): 1008-1015. doi: 10.1038/nature07125
[5] GREZES C, JULSGAARD B, KUBO Y, et al. Multimode storage and retrieval of microwave fields in a spin ensemble[J]. Physical Review, 2014, X4(2): 021049.
[6] BHASKAR M K, RIEDINGER R, MACHIELSE B, et al. Experimental demonstration of memory enhanced quantum communication[J]. Nature, 2020, 580(7801): 60-64. doi: 10.1038/s41586-020-2103-5
[7] CHANELIèRE T, MATSUKEVICH D N, JENKINS S D, et al. Sto-rage and retrieval of single photons transmitted between remote quantum memories[J]. Nature, 2005, 438(7069): 833-836. doi: 10.1038/nature04315
[8] CHOU C W, de RIEDMATTEN H, FELINTO D, et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles[J]. Nature, 2005, 438(7069): 828-832. doi: 10.1038/nature04353
[9] RADNAEV A G, DUDIN Y O, ZHAO R, et al. A quantum memory with telecom-wavelength conversion[J]. Nature Physics, 2010, 6(11): 894-899. doi: 10.1038/nphys1773
[10] BAO X H, REINGRUBER A, DIETRICH P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity[J]. Nature Physics, 2012, 8(7): 517-521. doi: 10.1038/nphys2324
[11] BUSTARD P J, LAUSTEN R, ENGLAND D G, et al. Toward quantum processing in molecules: A THz-bandwidth coherent memory for light[J]. Physical Review Letters, 2013, 111(8): 083901. doi: 10.1103/PhysRevLett.111.083901
[12] THIEL C W, BÖTTGER T, CONE R L. Rare-earth-doped materials for applications in quantum information storage and signal processing[J]. Journal of Luminescence, 2011, 131(3): 353-361. doi: 10.1016/j.jlumin.2010.12.015
[13] LIU G, JACQUIER B. Spectroscopic properties of rare earths in optical materials[M]. Beijing: Tsinghua University Press and Springer-Verlag Berlin Heidelberg, 2005: 23-59.
[14] ZHONG M, HEDGES M P, AHLEFELDT R L, et al. Optically addressable nuclear spins in a solid with a six-hour coherence time[J]. Nature, 2015, 517(7533): 177-180. doi: 10.1038/nature14025
[15] STONEHAM A M. Shapes of inhomogeneously broadened resonance line in solids[J]. Reviews of Modern physics, 1969, 41(1): 82-108. doi: 10.1103/RevModPhys.41.82
[16] ZHANG X Y, YUAN Ch Zh, WEI Sh H, et al. Rare earth doped solid state quantum memory[J]. Low Temperature Physical Letters, 2019, 41(5): 315-334 (in Chinese).
[17] LONGDELL J J, FRAVAL E, SELLARS M J, et al. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid[J]. Physical Review Letters, 2005, 95(6): 063601. doi: 10.1103/PhysRevLett.95.063601
[18] NILSSON M, KRÖLL S. Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles[J]. Optics Communications, 2005, 247(4/6): 393-403.
[19] TITTEL W, AFZELIUS M, CHANELIéRE T, et al. Photon-echo quantum memory in solid state systems[J]. Laser & Photonics Reviews, 2009, 4(2): 244-267.
[20] SANGOUARD N, SIMON C, AFZELIUS M, et al. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening[J]. Physical Review, 2007, A75(3): 032327.
[21] SAGLAMYUREK E. Broadband waveguide quantum memory for quantum communication[D]. Calgary, Canada: University of Calgary, 2013: 35.
[22] AFZELIUS M, SIMON C, de RIEDMATTEN H, et al. Multimode quantum memory based on atomic frequency combs[J]. Physical Review, 2009, A79(5): 052329.
[23] HEDGES M P, LONGDELL J J, LI Y, et al. Efficient quantum memory for light[J]. Nature, 2010, 465(7301): 1052-1056. doi: 10.1038/nature09081
[24] RUGGIERO J, LE GOUËT J L, SIMON C, et al. Why the two-pulse photon echo is not a good quantum memory protocol[J]. Physical Review, 2009, A79(5): 053851.
[25] SANGOUARD N, SIMON C, MINÁŘ J, et al. Impossibility of faithfully storing single photons with the three-pulse photon echo[J]. Physical Review, 2010, A81(6): 062333.
[26] LEDINGHAM P M, NAYLOR W R, LONGDELL J J, et al. Nonclassical photon streams using rephased amplified spontaneous emission[J]. Physical Review, 2010, A81(1): 012301.
[27] DAMON V, BONAROTA M, LOUCHET-CHAUVET A, et al. Revival of silenced echo and quantum memory for light[J]. New Journal of Physics, 2011, 13(9): 093031. doi: 10.1088/1367-2630/13/9/093031
[28] MEIXNER A J, JEFFERSON C M, MAcFARLANE R M. Measurement of the Stark effect with subhomogeneous linewidth resolution in Eu3+∶YAlO3 with the use of photon-echo modulation[J]. Physical Review, 1992, B46(10): 5912-5916.
[29] CHANELIÈRE T, RUGGIERO J, GOUËT J L L, et al. Tm3+∶Y2O3 investigated for a quantum light storage application[J]. Physical Review, 2008, B77(24): 245127.
[30] MOISEEV S A, KRÖLL S. Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a doppler-broadened transition[J]. Physical Review Letters, 2001, 87(17): 173601. doi: 10.1103/PhysRevLett.87.173601
[31] KRAUS B, TITTEL W, GISIN N, et al. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening[J]. Physical Review, 2006, A73(2): 020302.
[32] ALEXANDER A L, LONGDELL J J, SELLARS M J, et al. Photon echoes produced by switching electric fields[J]. Physical Review Letters, 2006, 96(4): 043602. doi: 10.1103/PhysRevLett.96.043602
[33] LAURITZEN B, MINÁŘ J, de RIEDMATTEN H, et al. Telecommunication-wavelength solid-state memory at the single photon level[J]. Physical Review Letters, 2010, 104(8): 080502. doi: 10.1103/PhysRevLett.104.080502
[34] LAURITZEN B, HASTINGS-SIMON S R, DE RIEDMATTEN H, et al. State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing[J]. Physical Review, 2008, A78(4): 043402.
[35] LAURITZEN B, MINÁŘ J, DE RIEDMATTEN, et al. Approaches for a quantum memory at telecommunication wavelengths[J]. Physical Review, 2011, A83(1): 012318.
[36] MARING N, KUTLUER K, COHEN J, et al. Storage of up-converted telecom photons in a doped crystal[J]. New Journal of Physics, 2014, 16(11): 113021. doi: 10.1088/1367-2630/16/11/113021
[37] SAGLAMYUREK E, JIN J, VERMA V B, et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre[J]. Nature Photonics, 2015, 9(2): 83-87. doi: 10.1038/nphoton.2014.311
[38] JIN J, SAGLAMYUREK E, PUIGIBERT M, et al. Telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits[J]. Physical Review Letters, 2015, 115(14): 140501. doi: 10.1103/PhysRevLett.115.140501
[39] SAGLAMYUREK E, PUIGIBERT M L G, ZHOU Q, et al. A multiplexed light-matter interface for fibre-based quantum networks[J]. Nature Communications, 2016, 7: 11202. doi: 10.1038/ncomms11202
[40] ASKARANI M F, PUIGIBERT M L G, LUTZ T, et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide[J]. Physical Review Applied, 2019, 11(5): 054056. doi: 10.1103/PhysRevApplied.11.054056
[41] CRAICIU I, LEI M, ROCHMAN J, et al. Nanophotonic quantum storage at telecommunication wavelength[J]. Physical Review Applied, 2019, 12(2): 024062. doi: 10.1103/PhysRevApplied.12.024062
[42] PUIGIBERT M L G, ASKARANI M F, DAVIDSON J H, et al. Entanglement and nonlocality between disparate solid-state quantum memories mediated by photons[J]. Physical Review Research, 2020, 2(1): 013039. doi: 10.1103/PhysRevResearch.2.013039
[43] CRAICIU I, LEI M, ROCHMAN J, et al. Multifunctional on-chip storage at telecommunication wavelength for quantum networks[J]. Optica, 2021, 8(1): 114-121. doi: 10.1364/OPTICA.412211
[44] WEI Sh H, JING B, ZHANG X Y, et al. Multiplexed and broadband quantum storage of single-photons at telecom C-band[C]//CLEO-QELS Fundamental Science. Washington DC, USA: Optical Society of America, 2021: FM4M. 2.
[45] XI Q, WEI Sh H, YUAN C Z, et al. Experimental observation of coherent interaction between laser and erbium ions ensemble doped in fiber at sub 10mK[J]. Science China Information Sciences, 2020, 63(8): 180505. doi: 10.1007/s11432-020-2954-5
[46] DAJCZGEWAND J, LE GOUËT J L, LOUCHET-CHAUVET A, et al. Large efficiency at telecom wavelength for optical quantum memories[J]. Optics Letters, 2014, 39(9): 2711-2714. doi: 10.1364/OL.39.002711
[47] MAcFARLANE R M, HARRIS T L, SAN Y, et al. Measurement of photon echoes at 1.5μm in Er3+∶Y2SiO5 using a diode laser and amplifier[C]//Quantum Electronics and Laser Science Conference. New York, USA: IEEE, 1997: QTuE24.
[48] BÖTTGER T, THIEL C W, CONE R L, et al. Effects of magnetic field orientation on optical decoherence in Er3+∶Y2SiO5[J]. Physical Review, 2009, B79(11): 115104.
[49] BÖTTGER T, SUN Y, THIEL C W, et al. Spectroscopy and dynamics of Er3+∶Y2SiO5 at 1.5μm[J]. Physical Review, 2006, B74(7): 075107.
[50] SUN Y, BÖTTGER T, THIEL C W, et al. Magnetic g tensors for the 4I15/2 and 4I13/2 states of Er3+∶Y2SiO5[J]. Physical Review, 2008, B77(8): 085124.
[51] BÖTTGER T, THIEL C W, SUN Y, et al. Optical decoherence and spectral diffusion at 1.5μm in Er3+∶Y2SiO5 versus magnetic field, temperature, and Er3+ concentration[J]. Physical Review, 2006, B73(7): 075101.
[52] DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418. doi: 10.1038/35106500
[53] WALLUCKS A, MARINKOVIĆ I, HENSEN B, et al. A quantum memory at telecom wavelengths[J]. Nature Physics, 2020, 16(7): 772-777. doi: 10.1038/s41567-020-0891-z
[54] MANENTI R, KOCKUM A F, PATTERSON A, et al. Circuit quantum acoustodynamics with surface acoustic waves[J]. Nature Communications, 2017, 8(1): 975. doi: 10.1038/s41467-017-01063-9
[55] BIENFAIT A, SATZINGER K J, ZHONG Y P, et al. Phonon-mediated quantum state transfer and remote qubit entanglement[J]. Science, 2019, 364: 368-371. doi: 10.1126/science.aaw8415
[56] SIMON C. Towards a global quantum network[J]. Nature Photonics, 2017, 11(11): 678-680. doi: 10.1038/s41566-017-0032-0
[57] YIN H L, CHEN T Y, YU Z W, et al. Measurement-device-independent quantum key distribution over a 404km optical fiber[J]. Physical Review Letters, 2016, 117(19): 190501. doi: 10.1103/PhysRevLett.117.190501
[58] URSIN R, JENNEWEIN T, KOFLER J, et al. Space-quest, experiments with quantum entanglement in space[J]. Europhysics News, 2009, 40(3): 26-29. doi: 10.1051/epn/2009503