[1] BIGLEY W J. Supervisory control of electro-optic tracking and pointing[J]. Proceedings of the SPIE, 1990, 1304: 207-218. doi: 10.1117/12.21566
[2] 马佳光, 尹义林. 778光电经纬仪跟踪控制系统[J]. 光电工程, 1986, 13(1): 50-60.MA J G, YIN Y L. The 778 tracking control system[J]. Opto-Electronic Engineering, 1986, 13(1): 50-60(in Chinese).
[3] 傅承毓, 马佳光, 叶步霞, 等. 复合轴控制系统应用研究[J]. 光电工程, 1998, 25(4): 1-12.FU Ch Y, MA J G, YE B X, et al. The application research of the composite axis control system[J]. Opto-Electronic Engineering, 1998, 25(4): 1-12(in Chinese).
[4] 王毅, 高伟志, 王贵文, 等. 光电精密跟踪的双重复合轴伺服系统[J]. 光学精密工程, 1996, 4(4): 58-61(in Chinese). doi: 10.3321/j.issn:1004-924X.1996.04.011WANG Y, GAO W Zh, WANG G W, et al. Dual compound axis servo system of opto-electronic precision tracking[J]. Optics and Precision Engineering, 1996, 4(4): 58-61(in Chinese). doi: 10.3321/j.issn:1004-924X.1996.04.011
[5] 周新力, 李醒飞. 光电跟踪系统积分反步自抗扰控制策略[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(4): 379-387.ZHOU X L, LI X F. Integral backstepping active disturbance rejection control strategy for the electro-optical targeting system[J]. Journal of Tianjin University (Science and Technology Edition), 2021, 54(4): 379-387(in Chinese).
[6] 秦树旺, 毛耀, 包启亮. 光电跟踪系统的模糊Ⅱ型控制技术研究[J]. 激光技术, 2021, 45(2): 147-154.QIN Sh W, MAO Y, BAO Q L. Research on fuzzy Ⅱ-order control method of photoelectric servo tracking systems[J]. Laser Technology, 2021, 45(2): 147-154(in Chinese).
[7] ZHOU X L, LI X F. Trajectory tracking control for electro-optical tracking system using ESO based fractional-order sliding mode control[J]. IEEE Access, 2021, 9: 45891-45902. doi: 10.1109/ACCESS.2021.3067680
[8] YU X H, KAYNAK O. Sliding-mode control with soft computing: A survey[J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3275-3285. doi: 10.1109/TIE.2009.2027531
[9] 乔琦, 钟铭亮, 任维, 等. 具有输入饱和的光电伺服平台的滑模控制[J]. 激光技术, 2020, 44(4): 429-435.QIAO Q, ZHONG M L, REN W, et al. Sliding mode control of the photoelectric servo platform with input saturation[J]. Laser Technology, 2020, 44(4): 429-435(in Chinese).
[10] ZHANG B, NIE K, CHEN X L, et al. Development of sliding mode controller based on internal model controller for higher precision electro-optical tracking system[J]. Actuators, 2022, 11(1): 16.
[11] HUANG J, ZHANG Z R, HAN J B, et al. Sliding mode control of permanent magnet generator system based on improved exponential rate reaching law[J]. IET Electric Power Applications, 2020, 14(7): 1154-1162.
[12] TANG Q R, LI Y H, GUO R Q, et al. Chattering-suppression sliding mode control of an autonomous underwater vehicle based on nonlinear disturbance observer and power function reaching law[J]. Transactions of the Institute of Measurement and Control, 2021, 43(9): 2081-2093.
[13] ABADI A S S, HOSSEINABADI P A, SOIN N B, et al. Chattering-free adaptive finite-time sliding mode control for trajectory tracking of MEMS gyroscope[J]. Automatic Control and Computer Sciences, 2020, 54(4): 335-345.
[14] 朱海荣, 焦子韵, 冒建亮, 等. 基于扰动观测器的光电跟踪平台滑模控制[J]. 自动化与仪表, 2018, 33(7): 33-37.ZHU H R, JIAO Z Y, MAO J L, et al. Disturbance observer based on sliding mode control of electro-optical tracking platform[J]. Automation & Instrumenation, 2018, 33(7): 33-37(in Chinese).
[15] 任彦, 牛志强. 新型终端滑模在光电稳定平台中的应用[J]. 红外与激光工程, 2018, 47(6): 114-120.REN Y, NIU Zh Q. Application of new terminal sliding mode in photoelectric stabilized platform[J]. Infrared and Laser Engineering, 2018, 47(6): 114-120(in Chinese).
[16] 乔琦. 输入饱和及扰动存在条件下的光电稳定平台滑模控制[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020: 50-65.QIAO Q. Sliding mode control of the optoelectronic stabilized platform with input saturation and disturbance[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2020: 50-65(in Chinese).
[17] MENDAL J M. Type-2 fuzzy sets and systems: An overview[J]. IEEE Computational Intelligence Magazine, 2007, 2(1): 20-29.
[18] 伍冬睿, 曾志刚, 莫红, 等. 区间二型模糊集和模糊系统: 综述与展望[J]. 自动化学报, 2020, 46(8): 1539-1556.WU D R, ZENG Zh G, MO H, et al. Interval type-2 fuzzy sets and systems: Overview and outlook[J]. Acta Automatica Sinica, 2020, 46(8): 1539-1556(in Chinese).
[19] 汪永阳. 基于快速反射镜的高精度视轴稳定技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2016: 18-20.WANG Y Y. Research on high precision LOS stabilization technology based on fast steering mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016: 18-20(in Chinese).
[20] 张士涛. 音圈式大行程快速反射镜及其视轴稳定技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2019: 16-28.ZHANG Sh T. Research on large-scale fast-steering-mirror driven by voice coil motor and its line-of-sight stabilization technology[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019: 16-28(in Chinese).
[21] 任戈. 复合轴结构的运动关系分析[J]. 光电工程, 1995, 22(6): 41-46.REN G. An analysis of kinematic relationship for compound-axis structure[J]. Opto-Electronic Engineering, 1995, 22(6): 41-46(in Chinese).
[22] 齐艺超, 陈伟, 穆春元, 等. 基于粒子群自整定PID算法的激光器温度控制系统[J]. 激光技术, 2019, 43(5): 60-64.QI Y Ch, CHEN W, MU Ch Y, et al. Laser temperature control system based on particle swarm self-tuning PID algorithm[J]. Laser Technology, 2019, 43(5): 60-64(in Chinese).
[23] 徐峰, 李东海, 薛亚丽. 基于ITAE指标的PID参数整定方法比较研究[J]. 中国电机工程学报, 2003, 23(8): 206-210.XU F, LI D H, XUE Y L. Comparing and optimum seeking of PID tuning methods base on ITAE index[J]. Proceedings of the CSEE, 2003, 23(8): 206-210(in Chinese).