[1] REED G T, MASHANOVICH G, GARDES F Y, et al. Silicon optical modulators[J]. Nature Photonics, 2010, 4(8): 518-526. doi: 10.1038/nphoton.2010.179
[2] REED G T, JASON PNG C E. Silicon optical modulators[J]. Materials Today, 2005, 8(1): 40-50. doi: 10.1016/S1369-7021(04)00678-9
[3] CHUNG S, NAKAI M, HASHEMI H. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems[J]. Optics Express, 2019, 27(9): 13430-13459. doi: 10.1364/OE.27.013430
[4] SUN J, KUMAR R, SAKIB M, et al. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning[J]. Journal of Lightwave Technology, 2019, 37(1): 110-115. doi: 10.1109/JLT.2018.2878327
[5] BASAK J, LIAO L, LIU A Sh, et al. Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms[J]. Advances in Optical Technologies, 2008, 2008(1): 1-10.
[6] YI H X, LONG Q F, TAN W, et al. Demonstration of low power penalty of silicon mach-zehnder modulator in long-haul transmission[J]. Optics Express, 2012, 20(25): 27562-27568. doi: 10.1364/OE.20.027562
[7] LIU J F, BEALS M, POMERENE A, et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators[J]. Nature Photonics, 2008, 2(7): 433-437. doi: 10.1038/nphoton.2008.99
[8] EDWARDS E H, LEVER L, FEI E T, et al. Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon[J]. Optics Express, 2013, 21(1): 867-876. doi: 10.1364/OE.21.000867
[9] DUMAS D C S, GALLACHER K, RHEAD S, et al. Ge/SiGe quantum confined stark effect electro-absorption modulation with low vol-tage swing at λ=1550 nm[J]. Optics Express, 2014, 22(16): 19284-19292. doi: 10.1364/OE.22.019284
[10] CHEN H W, KUO Y H, BOWERS J E. 25 Gb/s hybrid silicon switch using a capacitively loaded traveling wave electrode[J]. Optics Express, 2010, 18(2): 1070-1075. doi: 10.1364/OE.18.001070
[11] LIU L, van CAMPENHOUT J, ROELKENS G, et al. Carrier-injection-based electro-optic modulator on silicon-on-insulator with a heterogeneously integrated Ⅲ-Ⅴ microdisk cavity[J]. Optics Letters, 2008, 33(21): 2518-2520. doi: 10.1364/OL.33.002518
[12] 李从午, 卞立安. 基于F-P谐振与SPP共振的石墨烯双模吸波体设计[J]. 激光技术, 2021, 45(4): 507-510.LI C W, BIAN L A. Design of graphene double-mode absorber based on F-P resonance and SPP resonance[J]. Laser Technology, 2021, 45(4): 507-510(in Chinese).
[13] LIU M, YIN X B, ULIN-AVILA E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67. doi: 10.1038/nature10067
[14] QIU C Y, GAO W L, VAJTAI R, et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator[J]. Nano Letters, 2014, 14(12): 6811-6815. doi: 10.1021/nl502363u
[15] GAN S, CHENG C T, ZHAN Y H, et al. A highly efficient thermo-optic microring modulator assisted by graphene[J]. Nanoscale, 2015, 7(47): 20249-20255. doi: 10.1039/C5NR05084G
[16] XIONG C, PERNICE W H, TANG H X. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing[J]. Nano Letters, 2012, 12(7): 3562-3568. doi: 10.1021/nl3011885
[17] KITTLAUS E A, JONES W M, RAKICH P T, et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics[J]. Nature Photonics, 2020, 15(1): 43-52.
[18] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. doi: 10.1038/s41586-018-0551-y
[19] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377. doi: 10.1038/s41586-019-1008-7
[20] 成然, 黄帅, 徐强, 等. 铌酸锂量子器件研究进展[J]. 激光技术, 2022, 46(6): 722-728.CHENG R, HUANG Sh, XU Q, et al. Research progress of lithium niobate quantum devices[J]. Laser Technology, 2022, 46(6): 722-728(in Chinese).
[21] KUO Y H, LEE Y K, GE Y S, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J]. Nature, 2005, 437(7063): 1334-1336. doi: 10.1038/nature04204
[22] WEINER J S, MILLER D A B, CHEMLA D S. Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells[J]. Applied Physics Letters, 1987, 50(13): 842-844. doi: 10.1063/1.98008
[23] FRIGERIO J, CHAISAKUL P, MARRIS-MORINI D, et al. Electro-refractive effect in Ge/SiGe multiple quantum wells[J]. Applied Physics Letters, 2013, 102(6): 1-4.
[24] FRIGERIO J, VAKARIN V, CHAISAKUL P, et al. Giant electro-optic effect in Ge/SiGe coupled quantum wells[J]. Scientific Reports, 2015, 5: 15398. doi: 10.1038/srep15398