高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

布里渊散射分布式光纤传感器研究热点跟踪

任成 张书练

引用本文:
Citation:

布里渊散射分布式光纤传感器研究热点跟踪

    作者简介: 任成(1984- ),男,博士研究生,主要从事激光技术、光传感方面的研究工作..
    通讯作者: 张书练, zsl-dpi@tsinghua.edu.cn
  • 中图分类号: TP212.14

Research hotspots of distributed optic fiber sensor based on Brillouin scattering

    Corresponding author: ZHANG Shu-Han, zsl-dpi@tsinghua.edu.cn
  • CLC number: TP212.14

  • 摘要: 综述了基于布里渊散射的分布式光纤传感技术最新进展。介绍了其测量原理和研究现状;阐述了该领域目前的热点研究问题,包括空间分辨率提高、解决多参量测量的交叉敏感问题、消偏振衰落提高测量精度等;比较了各种解决方案的利弊;展望了今后的发展方向。
  • [1]

    LIAO Y B,LI M.The development of optical fiber sensors[J].Sensor World,2004,10(2):6-12(in Chinese).
    [2]

    YU L P,LIU Y Z,DAI Z Y.Brillouin scattering distributed optical fiber sensor[J].Laser & Optoelectronics Progress,2006(4):24-28(in Chinese).
    [3]

    SUN Q Z,LIU D M,WANG J.Recent progress in distributed optical fiber stress sensor[J].Semiconductor Optoelectronics,2007,28(1):10-15(in Chinese).
    [4]

    LIN H,DONG T,MA Y,et al.The measure error analysis of Brillouin scattering based on edge detecting technology[J].Laser Technology,2008,32(1):31-36(in Chinese).
    [5]

    WU Z X,WU F,NIU L Y,et al.The fully distributed optical fiber strain sensor based on Brilliouin optical-fiber frequency domain reflectometry[J].Chinese Journal of Scientific Instrument,2006,27(3):237-240(in Chinese).
    [6]

    SUN A,CHEN J L,LI G Y,et al.Detection of spontaneous Brillouin backscattered power in distributed optical fiber sensor system based on high frequency microwave technology[J].Chinese Journal of Lasers,2007,34(4):503-506(in Chinese).
    [7]

    FELLAY A,THEVENAZ L,FAECHINI M,et al.Distributing sensing using stimulated Brillouin scattering:toward ultimate resolution[J].Proccess Optical Society of America Technology Digest,1997,16:324-327.
    [8]

    BAO X Y,WEBB D J,JACKSON D A.Temperature non-uniformity in distributed temperature sensors[J].Electron Lett,1993,29(11):976-978.
    [9]

    BROWN A W,DeMERCHANT M D,BAO X Y,et al.Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing[J].Journal of Lightwave Technology,1999,17(7):1179-1183.
    [10]

    DeMERCHANT M D,BROWN A W,BAO X Y,et al.Signal processing for a high-spatial-resolution distributed sensor[J].Opt Engng,2000,39(6):1632-1635.
    [11]

    KALOSHA V P,PONOMAREV E A,CHEN L,et al.How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses[J].Optics Express,2006,14(6):2071-2078.
    [12]

    ZOU L F,FENG M Q.Detection of micrometer cracks by Brillouin-scattering-based distributed strain and temperature sensor[J].Proc SPIE,2008,7004:700419/1-700419/4.
    [13]

    BAO X Y,BROWN A W,DeMERCHANT M D,et al.Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short(<10ns) pulses[J].Opt Lett,1999,24(8):510-512.
    [14]

    LECOEUCHE V,WEBB D J,PANNELL C N,et al.Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time[J].Opt Lett,2000,25(3):156-158.
    [15]

    ZOU L F,BAO X Y,WAN Y D,et al.Coherent probe-pump-based Brillouin sensor for centimeter-crack detection[J].Opt Lett,2005,30(4):370-372.
    [16]

    HOTATE K,HASEGAWA T.Measurement of Brillouin gain spec-trum distribution along an optical fiber using a correlation-based technique——proposal,experiment and simulation[J].IEICE Transactions on Electronics,2000,E83-C(3):405-412.
    [17]

    HOTATE K,TANAKA M.Distributed fiber Brillouin sensing with 1cm spatial resolution by correlation-based continuous-wave technique[J].IEEE Photonics Technology Letters,2002,14(2):179-181.
    [18]

    HOTATE K,SEAN S L.Distributed dynamic strain measurement using a correlation-based Brillouin sensing system[J].IEEE Photonics Technology Letters,2003,15(2):272-274.
    [19]

    SONG K Y,HE Z Y,HOTATE K.Distributed strain measurement with millimeter order spatial resolution based on Brillouin optical correlation domain analysis[J].Opt Lett,2006,31(17):2526-2528.
    [20]

    BAO X Y,WEBB D J,JACKSON D A.Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber[J].Opt Lett,1994,19(2):141-143.
    [21]

    PARKER T R,FARHADIROUSHAN M,HANDEREK V A,et al.Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers[J].Opt Lett,1997,22(11):787 -789.
    [22]

    KEE H H,LEES G P,NEWSON T P.All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering[J].Opt Lett,2000,25(10):695-697.
    [23]

    LEE C C,CHIANG P W,CHI S.Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift[J].IEEE Photonics Technology Letters,2001,13(10):1094-1096.
    [24]

    ALAHBABI M,CHO Y T,NEWSON T P.Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors[J].Opt Lett,2004,29(1):26-28.
    [25]

    ZOU L F,BAO X Y,SHAHRAAM A V,et al.Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber[J].Opt Lett,2004,29(13):1485-1487.
    [26]

    YOSHINOT,YOKOTAM,KENMOCHIT.High-speedall-fiberpolarizationcontroller[J].Electron Lett,2003,39(25):1800-1802.
    [27]

    BUZZI S,CONTE E,de MAIO A.Polarization diversity reception of nonorthogonal multipulse signals in multiuser Rayleigh fading channels[J].IEE Proceedings Communications,2003,150(2):96-100.
    [28]

    KURASHIMA T,TATEDA M,HORIGUCHI T.Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state[J].IEEE Photonics Technology Letters,1997,9(3):360-362.
    [29]

    TAKADA K.Analysis of polarization dependence of optical low coherence reflectometry using an active Faraday rotator[J].Journal of Lightwave Technology,2003,21(11):2916-2922.
    [30]

    LIU D R,SONG M P,ZHANG X M.Polarization insensitive coherent detection for Brillouin scattering spectrum in BOTDR[J].Opt Commun,2005,254(1/3):168-172.
  • [1] 高英杨克成夏珉 . 关于布里渊散射强度角分布的探讨. 激光技术, 2004, 28(4): 420-423.
    [2] 林宏董天临马泳梁速 . 基于边缘探测技术的布里渊散射测量误差分析. 激光技术, 2008, 32(1): 30-32,36.
    [3] 刘紫娟李永倩张立欣范海军 . 基于光纤传感的形状传感发展研究. 激光技术, 2022, 46(6): 760-766. doi: 10.7510/jgjs.issn.1001-3806.2022.06.008
    [4] 陈强华丁锦红韩文远周胜关裕吕洪波孙启国 . 光纤SPR传感器参数对折射率测量灵敏度的影响. 激光技术, 2023, 47(3): 329-334. doi: 10.7510/jgjs.issn.1001-3806.2023.03.007
    [5] 宁贵毅傅贵史萌付永栋马任德苏富芳 . 飞秒激光制备光纤U形微结构应用于折射率传感. 激光技术, 2017, 41(6): 916-920. doi: 10.7510/jgjs.issn.1001-3806.2017.06.029
    [6] 吴锋吴柏昆余文志钱银博何岩 . 基于33耦合器相位解调的光纤声音传感器设计. 激光技术, 2016, 40(1): 64-67. doi: 10.7510/jgjs.issn.1001-3806.2016.01.014
    [7] 江莺段峥张晓丽胡兴柳 . 一组波峰波谷实现光纤环镜传感器在线测量. 激光技术, 2020, 44(5): 587-591. doi: 10.7510/jgjs.issn.1001-3806.2020.05.010
    [8] 张艳芬唐婷婷李杰 . 基于磁光波导的液体折射率传感特性研究. 激光技术, 2017, 41(4): 554-557. doi: 10.7510/jgjs.issn.1001-3806.2017.04.019
    [9] 范洪强张帅万洪丹 . 基于液芯MTC的低浓度血液葡萄糖光学传感器研究. 激光技术, 2021, 45(4): 448-455. doi: 10.7510/jgjs.issn.1001-3806.2021.04.007
    [10] 罗进江山熊岩 . 基于边缘滤波法的光纤光栅振动传感器解调技术. 激光技术, 2013, 37(4): 469-472. doi: 10.7510/jgjs.issn.1001-3806.2013.04.012
    [11] 陈士猛童杏林张翠李蒙张博陈续之 . 用于石化反应器的光纤F-P温/压复合传感器. 激光技术, 2022, 46(5): 641-647. doi: 10.7510/jgjs.issn.1001-3806.2022.05.010
    [12] 邹东伯刘海赵亮康迎杰 . 分布式光纤振动传感信号识别的研究. 激光技术, 2016, 40(1): 86-89. doi: 10.7510/jgjs.issn.1001-3806.2016.01.019
    [13] 黄涛孙恒东蒋骏王章轩杨永前陈金林 . 光纤分布式声传感系统在GIS耐压测试中的应用. 激光技术, 2023, 47(4): 459-462. doi: 10.7510/jgjs.issn.1001-3806.2023.04.003
    [14] 陈大凤鲁平刘德明 . 基于保偏光子晶体光纤的高灵敏度曲率传感器. 激光技术, 2015, 39(4): 450-452. doi: 10.7510/jgjs.issn.1001-3806.2015.04.004
    [15] 徐康吕淑媛杨祎 . 光子晶体光纤CO2气体传感器的研究. 激光技术, 2017, 41(5): 693-696. doi: 10.7510/jgjs.issn.1001-3806.2017.05.015
    [16] 胡雨润王目光孙春然张静邴帆陈德胜 . 光纤干涉传感器相位生成载波解调算法研究. 激光技术, 2022, 46(2): 213-219. doi: 10.7510/jgjs.issn.1001-3806.2022.02.011
    [17] 刘闯闯朱学华苏浩 . 高灵敏度全光纤电流传感器研究进展. 激光技术, 2022, 46(2): 175-181. doi: 10.7510/jgjs.issn.1001-3806.2022.02.005
    [18] 王晓蒙王会峰姚乃夫 . 基于粒子群算法的激光位移传感器参量优化. 激光技术, 2018, 42(2): 181-186. doi: 10.7510/jgjs.issn.1001-3806.2018.02.008
    [19] 白刚菅傲群邹璐 . 基于共振光隧穿效应的加速度传感器. 激光技术, 2019, 43(1): 43-47. doi: 10.7510/jgjs.issn.1001-3806.2019.01.009
    [20] 王志国尹亮林承友宣佳彬叶青 . 双金属层表面等离子体共振传感器灵敏度优化. 激光技术, 2017, 41(3): 328-331. doi: 10.7510/jgjs.issn.1001-3806.2017.03.005
  • 加载中
计量
  • 文章访问数:  4250
  • HTML全文浏览量:  572
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-08-06
  • 录用日期:  2008-11-05
  • 刊出日期:  2009-10-25

布里渊散射分布式光纤传感器研究热点跟踪

    通讯作者: 张书练, zsl-dpi@tsinghua.edu.cn
    作者简介: 任成(1984- ),男,博士研究生,主要从事激光技术、光传感方面的研究工作.
  • 1. 清华大学 精密仪器与机械学系 精密测试技术及仪器国家重点实验室 北京 100084

摘要: 综述了基于布里渊散射的分布式光纤传感技术最新进展。介绍了其测量原理和研究现状;阐述了该领域目前的热点研究问题,包括空间分辨率提高、解决多参量测量的交叉敏感问题、消偏振衰落提高测量精度等;比较了各种解决方案的利弊;展望了今后的发展方向。

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回