高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Yb3+双包层光纤激光器的研究进展

方刚 徐向涛 全恩臣 戴特力 范嗣强 张鹏

引用本文:
Citation:

掺Yb3+双包层光纤激光器的研究进展

    通讯作者: 张鹏, zhangpeng2010@cqnu.edu.cn
  • 基金项目:

    重庆市自然科学基金资助项目(cstcjjA40029);重庆师范大学博士启动基金资助项目(11XLB014)

  • 中图分类号: TN248.1

Research progress of Yb-doped double-clad fiber lasers

    Corresponding author: ZHANG Peng, zhangpeng2010@cqnu.edu.cn
  • CLC number: TN248.1

  • 摘要: 光纤激光器以其独特的优势得到快速发展,其应用范围已经扩展到工业加工、国防军事、医疗等领域。综述了连续、脉冲掺Yb3+双包层光纤激光器的国内外研究进展,介绍了利用能承受高功率的合束器、光纤光栅的全光纤激光器,利用种子光主振荡光纤放大技术产生高光束质量、高平均功率、高峰值功率的脉冲光纤激光器。分析了影响光纤激光器功率提高的因素,如光纤的损伤、非线性性效应、热效应。最后,对掺Yb3+双包层光纤激光器的发展前景进行了展望。
  • [1]

    LOU Q H. High power fiber lasers and its applications[M].Beijing:Press of University of Science and Technology of China,2010:8-12(in Chinese).
    [2]

    NILLSSON J, PAYNE D N. High-power fiber lasers[J].Science, 2011, 332(6032): 921-922.
    [3]

    CHEN Z L, HOU J, JIANG Z F. Estimation of maximum output power of double clad fiber laser[J]. High Power Laser and Particle Beams, 2007, 19(4): 577-580(in Chinese).
    [4]

    SNITZER E, PO H, HAKIMI F, et al. Double clad, offset core Nd fiber laser[C]//Optical Fiber Sensors.Washington DC,USA: Optical Society of America,1988:PD5.
    [5]

    JEONG Y, SAHU J K, PAYNE D N, et al. Ytterbium-doped large-core fiber laser with 1.36kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.
    [6]

    JEONG Y, BOYLAND A J, SAHU J K, et al. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser[J]. Journal of the Optical Society of Korea, 2009, 13(4): 416-422.
    [7]

    HE B, ZHOU J, LOU Q H, et al. 1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber[J]. Microwave and Optical Technology Letters, 2010, 52(7): 1668-1671.
    [8]

    MA Y X, XIAO H, ZHOU P, et al. kW level fiber laser in all fiber format[J]. High Power Laser and Particle Beams, 2011, 23(5): 1137-1138(in Chinese).
    [9]

    WU W M, XIAO H, XU J M, et al. Research progress of tandem-pumped fiber lasers[J]. Laser & Optoelectronics Progress, 2011 (9):11-18(in Chinese).
    [10]

    DUAN K L, ZHAO B Y, ZHAO W, et al. 1000W all-fiber laser[J].Chinese Journal of Lasers, 2009, 36(12): 3219(in Chinese).
    [11]

    YAN P, YIN Sh P, HE J W, et al. 1.1kW ytterbium monolithic fiber laser with assembled end-pump scheme to couple high brightness single emitters[J].IEEE Photonics Technology Letters, 2011, 23(11): 697-699.
    [12]

    KOECHNER W. Solid-state laser engineering[M].Beijing:Beijing Publishing House,2002:410-505(in Chinese).
    [13]

    LIMPERT J, HOFER S, LIEM A, et al. 100W average-power, high-energy nanosecond fiber amplifier[J]. Applied Physics,2002,B75(4/5): 477-479.
    [14]

    CHENG M, CHANG Y, GALVANAUSKAS A, et al. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200μm core highly multimode Yb-doped fiber amplifiers[J].Optics Letters, 2005, 30(4): 358-360.
    [15]

    LIMPERT J, DEGUIL-ROBIN N, MANEK-HNNINGER I, et al. High-power picosecond fiber amplifier based on nonlinear spectral compression[J]. Optics Letters, 2005, 30(7): 714-716.
    [16]

    ROSER F, ROTHHARD J, ORTAC B, et al. 131W 220fs fiber laser system[J].Optics Letters,2005, 30(20): 2754-2756.
    [17]

    DUPRIEZ P, PIPER A, MALINOWSKI A, et al. High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm[J]. IEEE Photonics Technology Letters, 2006, 18(9): 1013-1015.
    [18]

    ROSER F, SCHIMPF D, SCHMIDT O, et al. 90W average power 100μJ energy femtosecond fiber chirped-pulse amplification system[J]. Optics Letters,2007,32(15): 2230-2232.
    [19]

    CHEN K K, PRICE J V, ALAM V, et al. Polarisation maintaining 100W Yb-fiber MOPA producing μJ pulses tunable in duration from 1 to 21ps[J]. Optics Express,2010,18(14):14385-14394.
    [20]

    KONG L F, LOU Q H, ZHOU J, et al. 133W pulsed fiber amplifier with large-mode-area fiber [J]. Optical Engineering, 2006, 45(1): 010502.
    [21]

    YE Ch G, GONG M L, YAN P, et al. Linearly-polarized single-transverse-mode high-energy multi-ten nanosecond fiber amplifier with 50W average power[J]. Optics Express, 2006, 14(17): 7604-7609.
    [22]

    LI Y, ZHU Ch, WANG X F, et al. Experimental study on hundred-watt output power high repetition rate narrow pulse duration fiber lasers[J]. Chinese Journal of Lasers, 2009, 36(2): 281-284(in Chinese).
    [23]

    ZHOU J, DU S T, LIU X, et al. 150W high repetition frequency and narrow pulse fiber lasers with the MOPA way[J]. Chinese Journal of Lasers, 2009, 36(4): 861(in Chinese).
    [24]

    YANG K W, HAO Q, LI W X, et al. High-power femtosecond pulses fiber laser system[J]. Infrared and Laser Engineering, 2011, 40(7): 1254-1256(in Chinese).
    [25]

    SU R T, ZHOU P, WANG X L, et al. Single-frequency nanosecond pulsed laser with output power of 300W in all fiber format[J]. High Power Laser and Particle Beams, 2012, 24(5): 1009-1010(in Chinese).
    [26]

    YANG Ch B, LENG J Y, LU Q Sh. The theoretical analysis of SBS of Yb-doped double-clad in single-frequency fiber amplifier[J]. Laser Technology, 2011, 35(1): 117-121(in Chinese).
    [27]

    AGRAWAL G.Applications of nonlinear fiber optics[M]. 2nd ed. New York,USA:Academic Press, 2001:179-244.
    [28]

    BROWN D C, HOFFMAN H J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers[J]. IEEE Journal of Quantum Electronics, 2001, 37(2): 207-217.
  • [1] 陈吉欣隋展陈福深刘志强 . 掺Yb3+双包层光纤激光器的热效应分析. 激光技术, 2006, 30(3): 268-270.
    [2] 欧攀闫平巩马理张春熹 . 三点抽运的高功率双包层光纤激光器优化设计. 激光技术, 2007, 31(1): 57-60.
    [3] 黄云火黄磊张海涛柳强闫平巩马理 . 水柱导引抽运光纤激光器端面热效应分析. 激光技术, 2009, 33(3): 225-227.
    [4] 李隆董武威史彭甘安生许启明 . 高功率Yb:YAG微片激光器热效应研究. 激光技术, 2010, 34(1): 8-12. doi: 10.3969/j.issn.1001-3806.2010.01.003
    [5] 陈子伦侯静姜宗福 . 高功率掺镱双包层光纤激光器热效应理论研究. 激光技术, 2007, 31(5): 544-547,550.
    [6] 董淑福陈国夫赵尚弘沈华王屹山 . 高功率多模铒镱共掺双包层光纤激光器的研究. 激光技术, 2006, 30(4): 366-369.
    [7] 沈华丁广雷王屹山赵卫 . 双包层掺铒光纤激光器的数值模拟与实验. 激光技术, 2006, 30(1): 70-72.
    [8] 张军潘玉寨胡贵军张亮李守春王立军 . 掺镱双包层光纤光栅激光器输出特性的研究. 激光技术, 2004, 28(2): 173-176.
    [9] 欧攀闫平巩马理张春熹 . 双包层光纤激光器的熔接型侧面耦合器. 激光技术, 2008, 32(1): 8-10,22.
    [10] 欧攀张春熹闫平巩马理 . 多点抽运的双包层光纤激光器数值分析研究. 激光技术, 2007, 31(2): 150-152,178.
    [11] 李杰雄李波朱广志岳建堡王智用 . 高功率光纤激光器的残留包层光滤除研究. 激光技术, 2017, 41(6): 798-802. doi: 10.7510/jgjs.issn.1001-3806.2017.06.006
    [12] 周次明陈留勇 . 单模Er3+/Yb3+共掺双包层光纤上转换效应实验研究. 激光技术, 2008, 32(6): 639-641,662.
    [13] 邵橦闫平张海涛巩马理 . CO2激光熔接型双包层光纤侧面抽运耦合器. 激光技术, 2010, 34(3): 367-369. doi: 10.3969/j.issn.1001-3806.2010.03.023
    [14] 高俊超朱长虹李正佳 . 固态激光介质的热效应与光泵浦极限研究. 激光技术, 2004, 28(3): 271-274.
    [15] 尹赫马晶谭立英李密 . 高功率MgO:LiNbO3波导调制器的非线性影响分析. 激光技术, 2007, 31(3): 242-245.
    [16] 梅林王英王振佳彭伟鸿 . 掺Yb3+双包层光纤激光器的暂态数值分析. 激光技术, 2006, 30(3): 225-227,231.
    [17] 董淑福程光华杨玲珍陈国夫 . 双包层光纤激光器泵浦光耦合及激光反馈研究. 激光技术, 2003, 27(6): 523-525.
    [18] 冯祝万云芳 . LD端面抽运Nd:GGG激光器热效应研究. 激光技术, 2014, 38(3): 360-363. doi: 10.7510/jgjs.issn.1001-3806.2014.03.016
    [19] 孙若愚刘江谭方舟王璞 . 百皮秒激光脉冲的全光纤放大及应用. 激光技术, 2013, 37(4): 417-420. doi: 10.7510/jgjs.issn.1001-3806.2013.04.001
    [20] 庄茂录赵尚弘董淑福马丽华 . 双包层Er3+/Yb3+共掺光纤放大器粒子数特性分析. 激光技术, 2004, 28(4): 379-382,409.
  • 加载中
计量
  • 文章访问数:  3530
  • HTML全文浏览量:  658
  • PDF下载量:  1095
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-24
  • 录用日期:  2013-05-15
  • 刊出日期:  2014-02-25

掺Yb3+双包层光纤激光器的研究进展

    通讯作者: 张鹏, zhangpeng2010@cqnu.edu.cn
  • 1. 重庆师范大学 物理与电子工程学院 重庆市高校光学工程重点实验室, 重庆 400047
基金项目:  重庆市自然科学基金资助项目(cstcjjA40029);重庆师范大学博士启动基金资助项目(11XLB014)

摘要: 光纤激光器以其独特的优势得到快速发展,其应用范围已经扩展到工业加工、国防军事、医疗等领域。综述了连续、脉冲掺Yb3+双包层光纤激光器的国内外研究进展,介绍了利用能承受高功率的合束器、光纤光栅的全光纤激光器,利用种子光主振荡光纤放大技术产生高光束质量、高平均功率、高峰值功率的脉冲光纤激光器。分析了影响光纤激光器功率提高的因素,如光纤的损伤、非线性性效应、热效应。最后,对掺Yb3+双包层光纤激光器的发展前景进行了展望。

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回