高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯被动调Q掺Nd3+激光器研究进展

林洪沂 黄晓桦 许英朝 孟宪国 程再军 孙栋

引用本文:
Citation:

石墨烯被动调Q掺Nd3+激光器研究进展

    作者简介: 林洪沂(1982-),男,博士,副教授,主要从事全固态激光与非线性频率变换技术的研究。E-mail:linyi0714@163.com.
  • 基金项目:

    国家自然科学基金资助项目(11304259);福建省自然科学基金资助项目(2013J05104);福建省教育厅A类科技项目资助项目(JA12248;JA13231;JA12255)

  • 中图分类号: TN248.1

Research progress of graphene passively Q-switched Nd3+-doped lasers

  • CLC number: TN248.1

  • 摘要: 石墨烯是一种具有独特光学特性的2维碳纳米材料,利用其饱和吸收特性制成的被动调Q开关具有稳定性好、响应波长宽(可见光到中红外)、恢复时间短(约100fs)、非饱和吸收损耗少、制作方法简单、价格便宜等优点,广泛地应用于被动调Q脉冲激光领域。重点对石墨烯被动调Q掺Nd3+激光器研究进展进行了总结,分析了发展趋势,并指出性能优良的石墨烯饱和吸收体是其发展的关键。
  • [1]

    ZHONG G Sh, MAO X J, BI G J, et al. Lasers with narrow pulse width and high beam quality[J]. Laser Technology, 2013, 37(6):766-768(in Chinese).
    [2]

    LIN H Y, LI L Q, XU Y Ch. Influence of output mirror transmissivity on the output characteristics of Cr:YAG passively Q-switched laser[J]. Laser Infrared, 2015, 45(1):37-40(in Chinese)
    [3]

    SUN R Y, LIU J, TAN F Zh, et al. All-fiber amplification and application of 100ps laser pulse[J]. Laser Technology, 2013, 37(4):417-420(in Chinese).
    [4]

    YU H H, CHEN X F, ZHANG H J, et al. Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide[J]. ACS Nano, 2010, 4(12):7582-7586.
    [5]

    JIANG M, REN Zh Y, ZHANG Y P, et al. Passive Q-switching with graphene saturable absorber in Nd:YAG operating at 1064nm[J]. Materials Science Forum, 2011, 694(9):700-703.
    [6]

    JIANG M, REN Zh Y, ZHANG Y P, et al. Graphene-based passively Q-switched diode-side-pumped Nd:YAG solid laser[J]. Optics Communications, 2011, 284(22):5353-5356.
    [7]

    JIANG M, REN Zh Y, LU B L, et al. Low-repetition-rate high-energy passively Q-switched Nd:YAG solid laser based on graphene saturable absorber operating at 1064nm[J]. Current Nanoscience, 2012, 8(1):60-63.
    [8]

    CAO Y, LIU J, LIU J, et al. Passively Q-switched Nd:YAG microchip laser based on grapheme[J]. Chinese Journal of Lasers, 2012, 39(2):0202009(in Chinese).
    [9]

    WEN Q, ZHANG X J, WANG Y G, et al. Passively Q-switched Nd:YAG laser with graphene oxide in heavy water[J]. IEEE Photonics Journal, 2014, 6(2):1500706.
    [10]

    MEN Sh J, LIU Zh J, ZHANG X Y, et al. A graphene passively Q-switched Nd:YAG ceramic laser at 1123nm[J]. Laser Physics Letters, 2013, 10(3):035803.
    [11]

    ZHANG L, YU H J, YAN Sh L, et al. A 1319nm diode-side-pumped Nd:YAG laser Q-switched with graphene oxide[J]. Journal of Modern Optics, 2013, 60(15):1287-1289.
    [12]

    ZHANG H N, LI M, CHEN X H, et al. Graphene based passively Q-switched Nd:YAG eye-safe laser[J]. Chinese Physics Letters, 2014, 31(7):074201.
    [13]

    LI X, LIA G Q, ZHAO S Z, et al. Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate[J]. Laser Physics, 2012, 22(4):673-677.
    [14]

    CHEN Sh, LIN Zh H, LIANG L, et al. Passively Q-switched Nd:YVO4 laser at 1064nm and 1342nm using graphene as saturbale absorber[J]. Acta Sinica Quantum Optica, 2013, 19(4):367-372(in Chinese).
    [15]

    LIANG L, LIN Zh H, CHEN Sh, et al. Graphene passively Q-switching for dual-wavelength lasers at 1064nm and 1342nm in Nd:YVO4 laser[J]. Chinese Journal of Lasers, 2014, 41(4):0402009(in Chinese).
    [16]

    FENG T L, ZHAO Sh Zh, YANG K J, et al. Passively Q-switched lasers at 1.06m with graphene oxide and carbon nanotubes D2O dispersion[J]. Optical Materials, 2014, 36(7):1270-1273.
    [17]

    LI X L, XU J L, WU Y Zh, et al. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser[J]. Optics Express, 2011, 19(10):9950-9955.
    [18]

    XU J L, LI X L, HE J L, et al. Efficient graphene Q switching and mode locking of 1.34m neodymium lasers[J]. Optics Letters, 2012, 37(13):2652-2654.
    [19]

    WANG Y G, CHEN H R, WEN X M, et al. A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers[J]. Nanotechnology, 2011, 22(45):455203.
    [20]

    MATA-HERNANDO P, GUERRA J M, WEIGAND R. An Nd:YLF laser Q-switched by a monolayer-graphene saturable-absorber mirror[J]. Laser Physics, 2013, 23(2):025003.
    [21]

    YU H H, CHEN X F, HU X B, et al. Graphene as a Q-switcher for Neodymium-doped lutetium vanadate laser[J]. Applied Physics Express, 2011, 4(2):022704.
    [22]

    YAN Sh L, ZHANGA L, YU H J, et al. Watt-level Q-switched Nd:LuVO4 laser based on a graphene oxide saturable absorber[J]. Journal of Modern Optics, 2014, 61(3):234-238.
    [23]

    SHEN H B, WANG Q P, ZHANG X Y, et al. Passively Q-switched Nd:KLu(WO4)2 laser at 1355nm with graphene on SiC as saturable absorber[J]. Applied Physics Express, 2012, 5(9):092703.
    [24]

    ZHANG H N, CHEN X H, WANG Q P, et al. Graphene-based passively Q-switched Nd:KLu(WO4)2 eye-safe laser operating at 1.425nm[J]. Applied Physics, 2014, B114(3):313-317.
    [25]

    HAN Sh, LI X L, XU H H, et al. Graphene Q-switched 0.9m Nd:La0.11Y0.89VO4 laser[J]. Chinese Optics Letters, 2014, 12(1):011401.
    [26]

    ZHAO Y G, LI X L, XU M M, et al. Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber[J]. Optics Express, 2013, 21(3):3516-3522.
    [27]

    LIN H Y, MENG X G, HUANG X H, et al. Realization of quasi-phase-matched tunable singlefrequency optical parametric oscillator[J]. Laser Optoelectronics Progress, 2013, 50(6):060005(in Chinese).
    [28]

    CHU H W, ZHAO Sh Zh, LI T, et al. Dual-wavelength passively Q-switched Nd,Mg:LiTaO3 laser with a monolayer graphene as saturable absorber[J]. IEEE Journal of Selected Topics Quantum Electronics, 2015, 21(1):1600705.
  • [1] 马荣坤张亦驰方云团 . 基于石墨烯和1维光子晶体的THz宽带吸收器. 激光技术, 2017, 41(5): 723-727. doi: 10.7510/jgjs.issn.1001-3806.2017.05.021
    [2] 夏晶蒋国保赵楚军 . 高吸收调制下掺铥锁模光纤激光器的数值研究. 激光技术, 2016, 40(4): 571-575. doi: 10.7510/jgjs.issn.1001-3806.2016.04.024
    [3] 贾富强郑权薛庆华谭成桥钱龙生 . Cr4+:YAG被动调Q腔外三倍频紫外激光器. 激光技术, 2005, 29(6): 629-631.
    [4] 熊吉川兰戈万勇 . Cr4+:YAG被动调Q激光器脉冲波形数值模拟及优化. 激光技术, 2008, 32(4): 430-433.
    [5] 苏富芳吴福全郝殿中韩培高史萌 . LD抽运被动调Q Nd:YAG/GdVO4内腔式喇曼激光器. 激光技术, 2011, 35(3): 398-402. doi: 10.3969/j.issn.1001-3806.2011.03.029
    [6] 时光廖云王云祥闫平巩马理 . 微片被动调Q激光器的Siegman方程组的优化分析. 激光技术, 2005, 29(6): 636-638.
    [7] 吕蓬郭亨群王加贤李立卫申继伟 . 纳米Si/SiNx薄膜的制备及对Nd:YAG激光器的被动调Q. 激光技术, 2008, 32(2): 163-165,170.
    [8] 武继江高金霞 . 金属-石墨烯光子晶体-金属结构的吸收特性. 激光技术, 2019, 43(5): 614-618. doi: 10.7510/jgjs.issn.1001-3806.2019.05.005
    [9] 陈雨微卞立安刘培国王建范崇祎 . 基于多层F-P谐振腔的石墨烯吸波体设计. 激光技术, 2023, 47(3): 317-321. doi: 10.7510/jgjs.issn.1001-3806.2023.03.005
    [10] 陈永庆张陈涛张建寰 . 激光化学气相沉积石墨烯的基底温度场仿真. 激光技术, 2015, 39(5): 648-653. doi: 10.7510/jgjs.issn.1001-3806.2015.05.013
    [11] 陈肖燕赵刚王欲知 . 小型Cr4+:YAG调Q重频热传导冷却(Nd, Ce):YAG激光器研究. 激光技术, 2000, 24(2): 114-118.
    [12] 冯建辉陈肖燕祝家清赵刚刘圣广姜孟瑞 . 小型热传导冷却(Nd, Ce):YAG激光器热稳定性研究. 激光技术, 2001, 25(1): 63-66.
    [13] 何一凡刘晨晨蒋青云尹承平 . 石墨烯-六方氮化硼结构的古斯-汉欣位移. 激光技术, 2020, 44(4): 424-428. doi: 10.7510/jgjs.issn.1001-3806.2020.04.005
    [14] 胡莉席锋 . 石墨烯纳米片阵列的表面等离激元法诺共振. 激光技术, 2023, 47(1): 19-24. doi: 10.7510/jgjs.issn.1001-3806.2023.01.003
    [15] 江达飞江孝伟方晓敏 . 利用ITO微纳结构提高石墨烯紫外LED光提取效率. 激光技术, 2021, 45(2): 186-190. doi: 10.7510/jgjs.issn.1001-3806.2021.02.010
    [16] 廖秋雨张煜熔吴智杭叶婷张克非 . 周期性石墨烯盘表面拓扑边界传输态研究. 激光技术, 2021, 45(5): 642-646. doi: 10.7510/jgjs.issn.1001-3806.2021.05.018
    [17] 刘春东吕可杨诚 . 基于石墨烯的喇曼基底稳定性改良方法. 激光技术, 2019, 43(5): 708-712. doi: 10.7510/jgjs.issn.1001-3806.2019.05.023
    [18] 刘瑞科王超臣牛昌东金舵白振旭王雨雷吕志伟 . 键合Nd∶YAG/Cr4+∶YAG被动调Q微片激光器的优化设计. 激光技术, 2021, 45(2): 218-223. doi: 10.7510/jgjs.issn.1001-3806.2021.02.016
    [19] 柳强巩马理闫平贾维溥崔瑞祯王东生 . LD光纤耦合端面泵浦Nd:YVO4/Cr4+:YAG激光器. 激光技术, 2002, 26(6): 401-402,406.
    [20] 刘建强汪楠杨盈莹王菲林学春 . 一种声光调Q窄脉宽小体积激光器. 激光技术, 2017, 41(4): 562-565. doi: 10.7510/jgjs.issn.1001-3806.2017.04.021
  • 加载中
计量
  • 文章访问数:  7037
  • HTML全文浏览量:  4452
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 录用日期:  2015-02-05
  • 刊出日期:  2016-03-25

石墨烯被动调Q掺Nd3+激光器研究进展

    作者简介: 林洪沂(1982-),男,博士,副教授,主要从事全固态激光与非线性频率变换技术的研究。E-mail:linyi0714@163.com
  • 1. 厦门理工学院光电与通信工程学院, 厦门 361024;
  • 2. 福建省高校光电技术重点实验室, 厦门 361024
基金项目:  国家自然科学基金资助项目(11304259);福建省自然科学基金资助项目(2013J05104);福建省教育厅A类科技项目资助项目(JA12248;JA13231;JA12255)

摘要: 石墨烯是一种具有独特光学特性的2维碳纳米材料,利用其饱和吸收特性制成的被动调Q开关具有稳定性好、响应波长宽(可见光到中红外)、恢复时间短(约100fs)、非饱和吸收损耗少、制作方法简单、价格便宜等优点,广泛地应用于被动调Q脉冲激光领域。重点对石墨烯被动调Q掺Nd3+激光器研究进展进行了总结,分析了发展趋势,并指出性能优良的石墨烯饱和吸收体是其发展的关键。

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回