高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光辅助加热搅拌摩擦焊3维流场数值模拟

宋新华 修腾飞 金湘中 袁江 宋斌

引用本文:
Citation:

激光辅助加热搅拌摩擦焊3维流场数值模拟

    作者简介: 宋新华(1980-),男,硕士,主要从事激光焊接实验与数值模拟的研究。E-mail:sxhnuaa@163.com.
    通讯作者: 修腾飞, xiutf0902@163.com
  • 基金项目:

    张家界航空工业职业技术学院科研资助项目(ZHKT2015-008)

  • 中图分类号: TG402

Numerical simulation of 3-D flow field on laser-assisted heating friction stir welding of steel

    Corresponding author: XIU Tengfei, xiutf0902@163.com ;
  • CLC number: TG402

  • 摘要: 为了优化激光辅助加热搅拌摩擦焊接工艺、为焊接实验提供理论依据,采用数值模拟的方法,进行了Q235钢激光辅助加热搅拌摩擦焊3维流场模拟仿真。模拟分析了粘塑性材料的流动行为及热量传递过程,获得了被焊材料的流动场及温度场分布。结果表明,在焊接过程中,被焊材料主要是由后退侧向前进侧流动;激光功率为800W、焊接速率为23.5mm/min、转速由750r/min增加至1180r/min的过程中,被焊材料的流动性变好,最高温度升高,但未超过钢的熔点,与实际实验过程中钢未熔化一致。激光作为辅助热源,为焊接过程提供热量输入,可改善焊接材料的流动性。
  • [1]

    WANG G H, ZHAO Y H. The friction stir welding of aluminum alloys[M]. Beijing:China Astronautic Publishing House, 2010:8-17(in Chinese).
    [2]

    LUAN G H, NORTH T H, GUO D L, et al. Characterizations of friction stir welding on aluminum alloy[J]. Transactions of the China Welding Institution, 2002, 23(6):62-66(in Chinese).
    [3]

    YUAN G H, LIANG C L, LIU H, et al. Crystal orientation in nugget zone of friction stir welded 5083 aluminum alloy plates[J]. Transactions of the China Welding Institution, 2014, 35(8):79-82 (in Chinese).
    [4]

    JAGADEESHA C B. Dissimilar friction stir welding between aluminum alloy and magnesium alloy at a low rotational speed[J]. Materials Science and Engineering, 2014, A616(28):55-62.
    [5]

    CHEN G Q, SHI Q Y, LI Y J, et al. Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy[J]. Computational Materials Science, 2013, 79(14):540-546.
    [6]

    SONG M, KOVACEVIC R. Thermal modeling of friction stir welding in a moving coordinate system and its validation[J]. International Journal of Machine Tools Manufacture, 2003, 43(6):605-615.
    [7]

    SHEN Z K. Hybrid friction stir welding technology for steel[D]. Lanzhou:Lanzhou University of Technology, 2011:14-16(in Chinese).
    [8]

    LUO J, CHEN W, FU G. Hybrid-heat effects on electrical-current aided friction stir welding of steel, and Al and Mg alloys[J]. Journal of Materials Processing Technology, 2014, 214(12):3002-3012.
    [9]

    CHOI D H, LEE C Y, AHN B W, et al. Hybrid friction stir welding of high-carbon steel[J]. Journal of Materials Science Technology, 2011, 27(2):127-130.
    [10]

    ZHANG M C, DONG J X, ZENG Y P, et al. Dynamical microstructure evolution of Q235 low carbon steel during high temperature deformation[J]. Journal of University of Science and Technology Beijing, 2005, 27(2):183-186(in Chinese).
    [11]

    LIU X X, HUANG R, YAO G, et al. Numerical simulation of the temperature field of laser butt welding of titanium alloy sheet[J]. Laser Technology, 2013, 37(5):700-704(in Chinese).
    [12]

    HU Z R, ZHOU J Z, GUO H F, et al. Simulation of temperature field of laser welding by ABAQUS[J]. Laser Technology, 2007, 31(3):326-329(in Chinese).
  • [1] 胡增荣周建忠郭华锋杜建钧 . 应用ABAQUS模拟激光焊接温度场. 激光技术, 2007, 31(3): 326-329.
    [2] 梅丽芳秦建红严东兵 . 活性激光焊接304不锈钢温度场的数值与试验研究. 激光技术, 2020, 44(4): 492-496. doi: 10.7510/jgjs.issn.1001-3806.2020.04.016
    [3] 张建宇高立新崔玲丽吴迪平杨久霞王会刚 . 激光强化温度场的理论解析与实验论证. 激光技术, 2006, 30(1): 56-59.
    [4] 雷震张立文张晓玲孟庆端 . 高斯激光辐照焦平面探测器温度场分析与仿真. 激光技术, 2016, 40(4): 516-520. doi: 10.7510/jgjs.issn.1001-3806.2016.04.013
    [5] 李贝贝李小将 . 激光输能光电池温度场数值模拟. 激光技术, 2017, 41(4): 537-544. doi: 10.7510/jgjs.issn.1001-3806.2017.04.016
    [6] 孙浩徐建明张宏超杨欢陆健 . 连续激光辐照三结GaAs太阳电池温度场仿真. 激光技术, 2018, 42(2): 239-244. doi: 10.7510/jgjs.issn.1001-3806.2018.02.019
    [7] 王文斌郭子如张阳陈世雄 . 激光辐照下金属/炸药结构温度场的数值模拟. 激光技术, 2014, 38(5): 684-687. doi: 10.7510/jgjs.issn.1001-3806.2014.05.023
    [8] 陈永庆张陈涛张建寰 . 激光化学气相沉积石墨烯的基底温度场仿真. 激光技术, 2015, 39(5): 648-653. doi: 10.7510/jgjs.issn.1001-3806.2015.05.013
    [9] 王亚晨孙文磊黄勇王鑫龙黄海博 . 基于温度场评估的激光熔覆顺序决策方法研究. 激光技术, 2018, 42(5): 605-610. doi: 10.7510/jgjs.issn.1001-3806.2018.05.005
    [10] 冯爱新程昌殷苏民周建忠唐翠屏 . 激光划痕法膜基界面的温度场及应力场分析. 激光技术, 2008, 32(5): 527-530.
    [11] 师文庆杨永强黄延禄程大伟 . 选区激光熔化快速成型过程温度场数值模拟. 激光技术, 2008, 32(4): 410-412.
    [12] 裴旭吴建华 . 金属材料脉冲激光辐照瞬态温度场数值模拟研究. 激光技术, 2012, 36(6): 828-831. doi: 10.3969/j.issn.1001-3806.2012.06.029
    [13] 卢长亮胡芳友黄旭仁易德先胡滨崔爱永 . 脉冲激光辐照金属板温度场应力场数值分析. 激光技术, 2012, 36(6): 754-758. doi: 10.3969/j.issn.1001-3806.2012.06.011
    [14] 谢林圯吴腾龚美美马孝铭师文庆黄江谢玉萍何宽芳 . 单道激光熔覆温度场仿真及实验研究. 激光技术, 2022, 46(2): 226-232. doi: 10.7510/jgjs.issn.1001-3806.2022.02.013
    [15] 权秀敏丁林魏兴 . 激光熔覆Ni基合金温度场的数值分析. 激光技术, 2013, 37(4): 547-550. doi: 10.7510/jgjs.issn.1001-3806.2013.04.029
    [16] 底才翔孙艳军王菲陈燨丁伟 . 激光切割碳纤维复合材料的温度场仿真. 激光技术, 2020, 44(5): 628-632. doi: 10.7510/jgjs.issn.1001-3806.2020.05.017
    [17] 刘鑫龙芋宏鲍家定刘清原毛建冬 . 基于水辅助激光加工的水层流动特性的研究. 激光技术, 2017, 41(3): 442-446. doi: 10.7510/jgjs.issn.1001-3806.2017.03.027
    [18] 曹豆豆王开圣杨雁南 . 环状激光作用于薄管产生温度场的有限元模拟. 激光技术, 2010, 34(6): 753-756. doi: 10.3969/j.issn.1001-3806.2010.06.010
    [19] 曾大文谢长生 . 复合涂层激光熔池温度场及流场的数值模拟. 激光技术, 2000, 24(6): 370-374.
    [20] 李明海柳爱国宋耀祖 . 激光放大介质温度场和热应力场的数值模拟. 激光技术, 2002, 26(2): 86-89.
  • 加载中
计量
  • 文章访问数:  5108
  • HTML全文浏览量:  2467
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-23
  • 录用日期:  2015-04-07
  • 刊出日期:  2016-05-25

激光辅助加热搅拌摩擦焊3维流场数值模拟

    通讯作者: 修腾飞, xiutf0902@163.com
    作者简介: 宋新华(1980-),男,硕士,主要从事激光焊接实验与数值模拟的研究。E-mail:sxhnuaa@163.com
  • 1. 张家界航空工业职业技术学院 航空制造工程系, 张家界 427000;
  • 2. 湖南大学 汽车车身先进设计制造国家重点实验室, 长沙 410082
基金项目:  张家界航空工业职业技术学院科研资助项目(ZHKT2015-008)

摘要: 为了优化激光辅助加热搅拌摩擦焊接工艺、为焊接实验提供理论依据,采用数值模拟的方法,进行了Q235钢激光辅助加热搅拌摩擦焊3维流场模拟仿真。模拟分析了粘塑性材料的流动行为及热量传递过程,获得了被焊材料的流动场及温度场分布。结果表明,在焊接过程中,被焊材料主要是由后退侧向前进侧流动;激光功率为800W、焊接速率为23.5mm/min、转速由750r/min增加至1180r/min的过程中,被焊材料的流动性变好,最高温度升高,但未超过钢的熔点,与实际实验过程中钢未熔化一致。激光作为辅助热源,为焊接过程提供热量输入,可改善焊接材料的流动性。

English Abstract

参考文献 (12)

目录

    /

    返回文章
    返回