高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

9.3μm射频激励板条波导CO2激光器的研究

张鹏 任宁 林守利 徐锦忠

引用本文:
Citation:

9.3μm射频激励板条波导CO2激光器的研究

    作者简介: 张鹏(1979-), 男, 硕士, 高级工程师, 主要研究方向为全金属射频激励板条波导CO2激光器及激光加工工艺。E-mail:friend816@126.com.
  • 中图分类号: TN248.2+2

Study on 9.3μm RF exited slab waveguide CO2 laser

  • CLC number: TN248.2+2

  • 摘要: 为了得到9.3μm的激光输出,采用比较5种CO2同位素气体小信号增益系数的方法,进行了理论分析。选择同位素气体12C18O2作为射频激励板条波导CO2激光器的工作介质,进行了实验验证,得到了9.3μm的激光输出;并对激光器的工作气压进行优化,在10.00kPa的工作气压下,得到了最大96W的功率输出。结果表明,12C18O2的中心波长在9.3μm附近,且可得到高功率的激光输出。该研究有利于9.3μm CO2激光器的国产化,以及提高核心部件的国产化率。
  • Figure 1.  Spectral line range of CO2 isotope gas[14]

    Figure 2.  Diagram of the laser

    Figure 3.  Output wavelength of the laser

    Figure 4.  Relationship between RF power and laser power

    Figure 5.  Relationship between RF power and laser power with different gas pressures

    Figure 6.  Relationship between laser power and total gas pressure with different RF powers

    Table 1.  Small signal gain and saturation intensity of P(20) transition line about five kinds of carbon dioxide isotope gases

    band parameter 12C16O2 12C18O2 13C16O2 13C18O2 14C16O2
    α0/10-2cm-1 1.07 0.3 0.64 0.42 0.55
    Is/(W·cm-2) 47 30 38 39 56
    α0/10-2cm-1 0.9 0.73 0.26 0.42 0.099
    Is/(W·cm-2) 25 39 9 32 -3
    measured α0, Ⅰ/α0, Ⅱ 1.2 0.4 2.5 1.0 5.6
    calculated K/K 1.4 0.5 3.2 1.0 7.1
    下载: 导出CSV

    Table 2.  Small signal gain and saturation intensity of 12C18O2

    band transition α0/10-2cm-1 Is/(W·cm-2) α0 Is/(W·cm-3)
    P(28) 0.27 22 0.060
    P(24) 0.30 24 0.071
    P(20) 0.30 30 0.091
    P(16) 0.28 24 0.069
    P(14) 0.24 22 0.052
    R(12) 0.24 23 0.054
    R(16) 0.26 27 0.071
    R(20) 0.27 29 0.079
    R(24) 0.26 22 0.059
    R(28) 0.23 20 0.047
    P(28) 0.66 30 0.20
    P(24) 0.71 34 0.24
    P(20) 0.73 39 0.28
    P(16) 0.67 36 0.24
    P(14) 0.60 25 0.15
    R(12) 0.60 28 0.17
    R(16) 0.64 30 0.19
    R(20) 0.64 33 0.21
    R(24) 0.62 31 0.19
    R(28) 0.50 28 0.14
    下载: 导出CSV
  • [1]

    ZHOU B K, GAO Y Zh, CHEN T R, et al. Principles of lasers[M]. 6th ed. Beijing: National Defense Industry Press, 2009: 282-286(in Chinese).
    [2]

    WANG Y F, WU J, LIU Sh M, et al. Tunable characteristic of long pulse TE CO2 laser[J]. Infrared and Laser Engineering, 2008, 37(2):226-229(in Chinese). 
    [3]

    CHENG Y Q. Investigation on rapidly tunable technology of grating lines selection TEA CO2 laser [D]. Beijing: Chinese Academy of Sciences, 2006: 5-14(in Chinese).
    [4]

    LI Sh M, HUANG W L. The principles and design of laser devices [M]. Beijing: National Defense Industry Press, 2005:61-71(in Ch-inese).
    [5]

    YU K X, JIANG T L, ZHAO Q D.Laser principles and laser techniques[M]. Beijing: Beijing University of Technology Press, 1998:76-101(in Chinese).
    [6]

    XIE J J, LI D J, ZHANG C Sh, et al. Acousto-optically Q-switched CO2 laser[J]. Optics and Precision Engineering, 2009, 17(5):1008-1013(in Chinese). 
    [7]

    LIAO J M, LI Y D, LI Zh H, et al. Multi-frequency transversely excited atmospheric pressure CO2 laser [J]. High Power Laser and Particle Beams, 2009, 21(10): 1459-1461(in Chinese). 
    [8]

    XU D F, LI Y D, CHEN M. Theotetic model of same space dual-wavelength tunable TEA CO2 laser [J]. Infrared and Laser Engineering, 2008, 38(5):441-444(in Chinese).
    [9]

    YAN T, GUO H P, WANG Zh, et al. Research on unstable-waveguide hybrid resonator of parabolic mirrors for 3kW radio frequency slab CO2 laser [J]. Laser Technology, 2016, 40(6):796-800(in Chinese). 
    [10]

    SHAO Ch L, SONG X F, ZHANG L M, et al. High power TEA CO2 laser with two wavelength free shift output structure[J]. Optics and Precision Engineering, 2011, 19(2):429-436(in Chinese). doi: 10.3788/OPE.
    [11]

    SHAO Ch L, YANG G L, LI D J, et al. 9. 3μm branch selection research of high power pulse CO2 laser[J]. Journal of Chinese Lasers, 2011, 38(3):40-45(in Chinese). 
    [12]

    SONG X F, SHAO C L, GUO J, et al. Two-wavelength laser switching output technology in high power TEA CO2 laser[J]. High Power and Particle Beams, 2011, 23(2): 303-307(in Chinese). doi: 10.3788/HPLPB
    [13]

    GUO J, LI D J, WANG T F, et al. High power CO2 laser and its application technology[M]. Beijing: Science Press, 2013: 82-91(in Chinese).
    [14]

    ZHANG L L. Research on a miniature tunable isotope TEA 13C16O2 laser[D]. Harbin: Harbin Institute of Technology, 2008: 1-7(in Chinese).
    [15]

    FREED L E, FREED C, O'DONNELL R G, et al. Small signal gain and saturation intensity of 0001-[1000, 0200]Ⅰ and Ⅱ vibrational band transitions in sealed-off CO2 isotope lasers [J]. IEEE Journal of Quantum Electronics, 1982, 18(8): 1229-1236. doi: 10.1109/JQE.1982.1071683
    [16]

    SILVER M, HARTIWICK T S, POSAKONY M J. Gain measurements in CO2 isotope lasers [J]. Journal of Applied Physics, 1970, 41(11): 4566-4568. doi: 10.1063/1.1658497
  • [1] 兰戈赵刚江东王兴邦郑从众侯天晋屈坤红屈乾华董明吕百达 . 射频激励平板波导-非稳腔CO2激光器的研究. 激光技术, 1994, 18(2): 74-77.
    [2] 杨小康王兆申王坚 . 千瓦级快轴流CO2激光器的射频系统. 激光技术, 1995, 19(2): 66-69.
    [3] 江建平孙鹏刘向东周鼎富 . 紧凑型长寿命射频激励波导CO2激光器的研制. 激光技术, 2009, 33(6): 670-672. doi: 10.3969/j.issn.1001-3806.2009.06.032
    [4] 杨元杰李育德刘静伦张力军许德富 . 不含热池的11μm附近热带连续波CO2激光器实验研究. 激光技术, 2006, 30(2): 218-220.
    [5] 路晓川张阔海谭荣清黄伟柯常军 . 射频激励矩形波导CO2激光器的设计和实验研究. 激光技术, 2017, 41(2): 159-162. doi: 10.7510/jgjs.issn.1001-3806.2017.02.002
    [6] 严拓郭海平王振王炜唐霞辉王度 . 3kW射频板条CO2激光器抛物面非稳波导腔研究. 激光技术, 2016, 40(6): 796-800. doi: 10.7510/jgjs.issn.1001-3806.2016.06.005
    [7] 王从刚周鼎富赵晓军孙鹏杨泽后侯天晋江东陈建国 . 陶瓷多通道折叠射频波导稳频脉冲CO2激光器研究. 激光技术, 2009, 33(4): 355-358. doi: 10.3969/j.issn.1001-3806.2009.04.006
    [8] 王建银周鼎富陈建国孙鹏杨泽后陈涌 . 脉宽可控的腔倒空射频波导CO2激光器. 激光技术, 2007, 31(1): 25-28.
    [9] 陈晓姣唐霞辉彭浩 . 3kW射频板条CO2激光器功率稳定性的研究. 激光技术, 2017, 41(1): 91-97. doi: 10.7510/jgjs.issn.1001-3806.2017.01.019
    [10] 周鼎富江东侯天晋郑从众陈建国 . RF激励波导CO2激光器电光调Q实验研究. 激光技术, 2002, 26(4): 270-272.
    [11] 李晴王又青黄鸿雁 . 轴快流CO2激光器放电管结构的研究和设计. 激光技术, 2010, 34(4): 525-528. doi: 10.3969/j.issn.1001-3806.2010.04.025
    [12] 邵橦闫平张海涛巩马理 . CO2激光熔接型双包层光纤侧面抽运耦合器. 激光技术, 2010, 34(3): 367-369. doi: 10.3969/j.issn.1001-3806.2010.03.023
    [13] 刘建华王又青陈清明陈一坚李再光段军胡席远 . 同轴射频激励CO2激光器的热效应研究. 激光技术, 2001, 25(1): 54-59.
    [14] 赵恒李波胡友友王炜王振 . 高功率轴快流CO2激光器激励源热沉结构优化设计. 激光技术, 2017, 41(4): 566-572. doi: 10.7510/jgjs.issn.1001-3806.2017.04.022
    [15] 汪辉王新兵何云贵 . 封离型全金属RF激励CO2激光器的热设计. 激光技术, 2005, 29(1): 21-23.
    [16] 王新兵徐启阳谢明杰许德胜李再光 . 高频方波放电激励扩散冷却CO2激光器的研究. 激光技术, 1997, 21(6): 358-360.
    [17] 卢宏胡菁陈清明 . 约束放电激励千瓦级基模CO2激光器增益分布的测量. 激光技术, 1998, 22(3): 161-163.
    [18] 王世贵译封鸿渊校 . 射频激励CO2波导激光器. 激光技术, 1986, 10(1): 33-35,39.
    [19] 金杰张建伟杨宇马翔 . 1.5μm波段乙炔气体稳频光纤光栅外腔半导体激光器. 激光技术, 2007, 31(4): 341-343.
    [20] 杨卫红唐霞辉肖龙胜周泳全 . 单放电盒5kW横流CO2激光器气体流动特性研究. 激光技术, 2014, 38(5): 608-613. doi: 10.7510/jgjs.issn.1001-3806.2014.05.007
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  6691
  • HTML全文浏览量:  4813
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-07
  • 录用日期:  2017-02-18
  • 刊出日期:  2017-11-25

9.3μm射频激励板条波导CO2激光器的研究

    作者简介: 张鹏(1979-), 男, 硕士, 高级工程师, 主要研究方向为全金属射频激励板条波导CO2激光器及激光加工工艺。E-mail:friend816@126.com
  • 大族激光科技产业集团股份有限公司, 深圳 518000

摘要: 为了得到9.3μm的激光输出,采用比较5种CO2同位素气体小信号增益系数的方法,进行了理论分析。选择同位素气体12C18O2作为射频激励板条波导CO2激光器的工作介质,进行了实验验证,得到了9.3μm的激光输出;并对激光器的工作气压进行优化,在10.00kPa的工作气压下,得到了最大96W的功率输出。结果表明,12C18O2的中心波长在9.3μm附近,且可得到高功率的激光输出。该研究有利于9.3μm CO2激光器的国产化,以及提高核心部件的国产化率。

English Abstract

    • CO2激光器的激光功率输出范围从几十毫瓦到几万瓦,现在已经发现有数百支谱线输出,在工业、军事、医疗、科研等领域得到了广泛的应用[1-5]。封离型射频激励扩散冷却板条波导CO2激光器,由于具有效率高、易于调制、工作寿命长、免维护等优点,中低功率的CO2激光器越来越多地采用此结构[6-9]。普通工作介质的CO2激光器输出波长为10.6μm,在切割、表面信息标记等方面得到了广泛的应用。随着CO2激光器应用范围的扩展,发现聚对苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚酯酰胺薄膜等,其10.6μm波长的吸收率不如9.3μm波长吸收率高。激光作为一种先进加工手段,要求精细化加工,聚焦光斑的直径尽量小。影响聚焦光斑直径的因素有:光束质量、聚焦镜焦距、激光波长。在其它条件相同的情况下,9.3μm波长得到的聚焦光斑直径比10.6μm波长的约小13%。

      国内外对9.3μm激光器已经开展了广泛的研究。主要分为两种方式:一种为采用同位素气体; 一种为谱线选支。在国内使用横向激励高气压(transversely excited atmospheric, TEA)CO2激光器,使用腔镜镀膜选支的方法,得到了9.3μm激光器的输出[10-13]。国外已经出现了商用的9.3μm激光器,国内还没有相应的商用9.3μm激光器。

    • 氧元素和碳元素有众多的同位素,所以,CO2有众多的同位素气体,如12C16O213C16O212C18O2等,对应的输出谱线范围如图 1[14]所示。

      Figure 1.  Spectral line range of CO2 isotope gas[14]

      图 1中可以发现,CO2存在两种跃迁,0001→1000(Ⅰ波段)和0001→0200(Ⅱ波段),9.3μm(1075cm-1)波长出现在0001→0200波段。3种同位素气体可以产生9.3μm波段跃迁:12C16O212C16O18O,12C18O2。在谱线竞争中,小信号增益系数大的谱线在振荡竞争中获胜,产生激光振荡,饱和光强大的产生的激光输出功率高。美国科学家测量了5种同位素气体P(20)跃迁谱线的小信号增益系数和饱和光强,并计算了两个波段的增益系数比[15-16],见表 1

      Table 1.  Small signal gain and saturation intensity of P(20) transition line about five kinds of carbon dioxide isotope gases

      band parameter 12C16O2 12C18O2 13C16O2 13C18O2 14C16O2
      α0/10-2cm-1 1.07 0.3 0.64 0.42 0.55
      Is/(W·cm-2) 47 30 38 39 56
      α0/10-2cm-1 0.9 0.73 0.26 0.42 0.099
      Is/(W·cm-2) 25 39 9 32 -3
      measured α0, Ⅰ/α0, Ⅱ 1.2 0.4 2.5 1.0 5.6
      calculated K/K 1.4 0.5 3.2 1.0 7.1

      表 1中,α0为小信号增益系数,K为通过理论计算得到的增益系数,Is为饱和光强。12C16O2的Ⅰ波段的P(20)跃迁谱线为10.6μm,小信号增益系数是Ⅱ波段P(20)跃迁谱线9.55μm的1.2倍,所以,10.6μm谱线比9.55μm谱线更容易产生激光振荡。12C16O2的常规激光输出波长为10.6μm谱线。12C18O2的Ⅱ波段的P(20)谱线小信号增益系数为Ⅰ波段P(20)谱线的2.5倍,所以,12C18O2的Ⅱ波段的P(20)支优先振荡。1982年, FREED等人[15]测量了表 1中5种同位素气体波段Ⅰ和波段Ⅱ中P(J)和R(J)(转动能级的转动量子数J=12, 16, 20, 24, 28)的小信号增益系数α0和饱和光强Is,并计算了α0Is。FREED的测量结果显示,同一波段中,P支谱线大于R支谱线的增益系数,且P支谱线中P(20)支的α0Is最大。激光器的输出功率公式如下[14]:

      $ {{P}_{0}}=2{{I}_{\text{s}}}AT\left( \frac{{{\alpha }_{0}}l}{{{L}_{\text{i}}}+T}-1 \right)~ $

      (1)

      式中,P0为激光器的输出功率,A为增益介质的横截面积,T为激光器输出镜的透过率,α0为激光器的小信号增益系数,l为增益介质的长度,Li为腔内损耗。由(1)式可知,P(20)支谱线输出激光功率最大。

      FREED测量得到的12C18O2结果见表 2[15]

      Table 2.  Small signal gain and saturation intensity of 12C18O2

      band transition α0/10-2cm-1 Is/(W·cm-2) α0 Is/(W·cm-3)
      P(28) 0.27 22 0.060
      P(24) 0.30 24 0.071
      P(20) 0.30 30 0.091
      P(16) 0.28 24 0.069
      P(14) 0.24 22 0.052
      R(12) 0.24 23 0.054
      R(16) 0.26 27 0.071
      R(20) 0.27 29 0.079
      R(24) 0.26 22 0.059
      R(28) 0.23 20 0.047
      P(28) 0.66 30 0.20
      P(24) 0.71 34 0.24
      P(20) 0.73 39 0.28
      P(16) 0.67 36 0.24
      P(14) 0.60 25 0.15
      R(12) 0.60 28 0.17
      R(16) 0.64 30 0.19
      R(20) 0.64 33 0.21
      R(24) 0.62 31 0.19
      R(28) 0.50 28 0.14

      表 2中的数据表明,12C18O2的1000→0200波段优先振荡。对应波段的P(14)~P(28)谱线的输出波长范围为9.31μm ~9.41μm。

    • 激光器采用全金属封离型射频激励扩散冷却板条波导激光器,图 2为其简图。后腔镜和前腔镜反射率为:R9.3=99.10%,R10.6=99.25%。谐振腔为非稳腔,前后腔镜均采用球面反射镜,后腔镜曲率半径ρrear=663mm,前腔镜曲率半径ρfront=567mm,腔长L=625mm,刀口输出。放电发生在两电极板之间,放电体积的大小为2mm(电极间距)×33mm(电极板宽度)×600mm(电极板长度),射频(radio frequency,RF)电源为81MHz,射频功率范围为0W~686W。4对电感装在电极板的两侧,使放电区域放电均匀。电极板和射频电源均由冷却水进行冷却。电极板、腔镜装在铝合金材料的密封腔体,密封腔体内充满工作气体,激光由输出窗输出。

      Figure 2.  Diagram of the laser

    • 按照p(12C18O2):p(N2):p(He)=1:1:8的气压比例充入工作气体,总气压为8.0kPa,气压比为5%的Xe(Xe气压和总气压的比)。射频注入功率为686W时,最大激光输出功率为63W,测量输出激光波长为9.3μm,如图 3所示。

      Figure 3.  Output wavelength of the laser

    • 按照p(12C18O2):p(N2):p(He)=1:1:8的气压比例充入工作气体,总气压为8.0kPa,气压比为5%的Xe,激光输出功率曲线如图 4所示。

      Figure 4.  Relationship between RF power and laser power

      图 4可以看出,激光输出功率随占空比的增加而增加,在射频功率大于400W时,曲线斜率减小,激光功率上升变缓。这表明,工作气体气压低于最佳工作气压。

      在气体组分比例不变的情况下,改变充气的总气压,进行气压优化实验。总气压分别为8.00kPa,9.33kPa,10.67kPa,10.00kPa,得到的功率曲线如图 5所示。

      Figure 5.  Relationship between RF power and laser power with different gas pressures

      图 5中,不同的工作气压下,激光功率均随着射频注入功率的增加而增大,功率曲线的斜率表示激光功率随射频功率增加的快慢。图 5表明,不同的工作气压,射频功率增大的快慢不同;最大功率发生在10.00kPa时,表明激光功率和工作气压不是正向关系。图 6是在相同的注入射频功率下,不同工作气压的激光功率。在一定的射频注入功率下,在最佳气压值下,激光功率达到最大,偏离此气压,激光功率都会下降。这是因为,气压低于最佳气压,随着射频功率的增加,导致放电区的等离子体介质阻抗降低,E/P(E为电极板间的电场强度,P为气体的电离功率)降低,从而影响输出功率;而气压高于最佳气压时,分子的热运动过多消耗了高能级的CO2分子,导致激光功率下降。

      Figure 6.  Relationship between laser power and total gas pressure with different RF powers

    • 12C18O2的1000→0200波段P支谱线的小信号增益最大,其激光输出波长为9.3μm。利用12C18O2代替12C16O2作为工作介质,在腔镜反射率对9.3μm和10.6μm反射都大于99%的情况下,获得了9.3μm波长的激光输出。通过气压优化实验工作,得到了此激光器的最佳工作气压为10.00kPa,并在此气压下获得了最大96W的9.3μm波长激光输出,注入射频功率和激光输出效率比达到了14%。

参考文献 (16)

目录

    /

    返回文章
    返回