高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调谐被动锁模掺铥光纤激光器

杜鹃 熊胗婷 佘敏 张娇娇 刘思敏 张祖兴

引用本文:
Citation:

可调谐被动锁模掺铥光纤激光器

    作者简介: 杜鹃(1996-),女,大学本科生,主要研究方向为掺铥光纤激光器.
    通讯作者: 张祖兴, zxzhang@njupt.edu.cn
  • 基金项目:

    江苏省“六大人才高峰”资助项目 2015-XCL-023

    江苏省自然科学基金资助项目 BK20161521

    大学生创新创业训练计划资助项目 SZD2017010

  • 中图分类号: TN248

Tunable passively mode-locked thulium-doped fiber lasers

    Corresponding author: ZHANG Zuxing, zxzhang@njupt.edu.cn
  • CLC number: TN248

  • 摘要: 为了实现波长可调谐被动锁模掺铥光纤激光器,提出了基于激光腔随机双折射效应通过调节激光偏振态来改变被动锁模掺铥光纤激光器的工作波长的方法,并进行了原理分析和实验验证。结果表明,调节偏振控制器可实现在2010nm,2019nm,2024nm,2050nm等多个中心波长处的锁模脉冲输出,同时在单个中心波长附近,还可以精密调谐。这种可调谐锁模激光器结构简单、可调谐性好,对光通信、超快光学、医学、遥感技术和雷达等应用中光源的选择有一定的参考价值。
  • Figure 1.  Experimental schematic diagram of tunable passively mode-locked thulium-doped fiber laser

    Figure 2.  Relationship between intensity and wavelength under different pump powers

    Figure 3.  Output train of mode-locked pulse

    Figure 4.  RF spectrum of mode-locked pulse

    Figure 5.  Relationship between output power and pump power

    Figure 6.  Finely tuning of mode-locked pulse spectrum near 2050nm wavelength under the same pump light power condition

    Figure 7.  Tuning of mode-locked pulse spectrum with broad spectral range under the same pump light power condition

  • [1]

    GUO Y B, HUO J Y. Fiber laser and its application[M]. Beijing: Science Press, 2008: 1-20(in Chinese).
    [2]

    LIU Sh. Study on high quality multi-wavelength and pulse laser seed sources used in 2μm band high power fiber laser[D]. Beijing: Beijing Jiaotong University, 2017: 1-5 (in Chinese).
    [3]

    WANG Y, ALAM S U, OBRAZTSOVA E D, et al. Generation of stretched pulses and dissipative solitons at 2μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers[J]. Optics Letters, 2016, 41(16): 3864-3867. doi: 10.1364/OL.41.003864
    [4]

    WALSH B. Review of Tm and Ho materials: spectroscopy and lasers[J]. Laser Physics, 2009, 19(4): 855-866. doi: 10.1134/S1054660X09040446
    [5]

    HUO J Y. Study on soliton characteristics of passively mode-locked fiber laser[D]. Changchun: Jilin University, 2016: 7-14(in Chinese).
    [6]

    SHAO Zh H, QIAO X G, RONG Q Zh, et al. Observation of the evolution of mode-locked solitons in different dispersion regimes of fiber lasers[J]. Optics Communications, 2015, 345: 105-110. doi: 10.1016/j.optcom.2015.02.004
    [7]

    BALZER J C, PILNY R H, DÖPKE B, et al. Passively mode-locked diode laser with optimized dispersion management[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 16-23. doi: 10.1109/JSTQE.2015.2418225
    [8]

    MENG Y Ch, NIANG A, GUESMI K, et al. 1.61μm high-order passive harmonic mode locking in a fiber laser based on graphene sa-turable absorber[J]. Optics Express, 2014, 22(24):29921-29926. doi: 10.1364/OE.22.029921
    [9]

    ZHOU X K, SONG Y J, LIAO R Y, et al. Research on modified nonlinear amplifying loop mirror and thulium-doped fiber femtosecond laser[J]. Chinese Journal of Lasers, 2015, 42(12): 1202002(in Chinese). doi: 10.3788/CJL
    [10]

    ZHANG Zh Sh, GAN J L, YANG T, et al. All-fiber mode-locked laser based on microfiber polarizer[J]. Optics Letters, 2015, 40(5): 784-787. doi: 10.1364/OL.40.000784
    [11]

    CHERNYSHEVA M A, KRYLOV A A, KRYUKOV P G, et al. Nonlinear amplifying loop mirror based mode-locked thulium doped fiber laser[J]. IEEE Photonics Technology Letters, 2012, 24(14): 1254-1256. doi: 10.1109/LPT.2012.2201713
    [12]

    KANG Z, LIU M Y, GAO X J, et al. Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber[J]. Laser Physics Letters, 2015, 12(4): 045105. doi: 10.1088/1612-2011/12/4/045105
    [13]

    MA H Q, LIU Ch, ZHAO W, et al. Figure-of-eight cavity Yb3+-doped fiber mode-locked lasers[J]. Chinese Journal of Lasers, 2005, 32(9):1173-1177(in Chinese). 
    [14]

    LI J F, ZHANG Z X, SUN Z Y, et al. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2μm in both soliton and noisy-pulse regimes[J]. Optics Express, 2014, 22(7): 7875-7882. doi: 10.1364/OE.22.007875
    [15]

    LUO Z Ch, XU W Ch, SONG Ch X, et al. Pulse-train nonuniformity in an all-fiber ring laser passively mode-locked by nonlinear pola-rization rotation[J]. Chinese Physics, 2009, B18(6):2328-2333.
    [16]

    YANG X F, DONG F J, TONG Zh R, et al. Tunable multi-wavelength fiber laser based on nonlinear polarization rotation[J].Infrared and Laser Engineering, 2012, 41(1):53-57(in Chinese). 
    [17]

    WANG J, TANG X, LIN J, et al. Numerical study on output cha-racteristics of single-pulse mode-locked fiber lasers[J]. Laser Technology, 2017, 41(6): 784-787(in Chinese).
    [18]

    ZHANG Zh X, SANG M H, YE Zh Q, et al. Multi-wavelength fiber laser based on nonlinear polarization rotation[J]. Acta Optica Sinica, 2008, 28(4): 648-652(in Chinese). doi: 10.3788/AOS
    [19]

    ZHANG Z X, ZHAN L, XU K, et al. Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter[J]. Optics Letters, 2008, 33(4): 324-326. doi: 10.1364/OL.33.000324
  • [1] 马海全赵卫张伟王屹山陈国夫程昭 . 波长可调谐被动锁模光纤激光器. 激光技术, 2006, 30(3): 289-291.
    [2] 吕家亮姚培军许立新 . 波长可调谐的锁模柱矢量光纤激光器. 激光技术, 2023, 47(4): 454-458. doi: 10.7510/jgjs.issn.1001-3806.2023.04.002
    [3] 夏晶蒋国保赵楚军 . 高吸收调制下掺铥锁模光纤激光器的数值研究. 激光技术, 2016, 40(4): 571-575. doi: 10.7510/jgjs.issn.1001-3806.2016.04.024
    [4] 赵羽刘永智赵德双黄琳 . 光纤激光器锁模技术研究进展. 激光技术, 2009, 33(2): 162-165.
    [5] 况庆强桑明煌聂义友张祖兴付贵阳 . 利用NALM结构的被动锁模掺铒光纤激光器的研究. 激光技术, 2008, 32(6): 631-634.
    [6] 欧攀贾豫东林志立刘磊 . 基于饱和吸收镜的被动锁模掺铒光纤激光器. 激光技术, 2011, 35(1): 58-60. doi: 10.3969/j.issn.1001-3806.2011.01.017
    [7] 张祖兴伍剑徐坤林金桐 . 被动锁模光纤激光器的多模式输出. 激光技术, 2009, 33(5): 548-550,554. doi: 10.3969/j.issn.1001-3806.2009.05.020
    [8] 陆丹葛廷武伍剑徐坤林金桐 . D形双包层大模场光纤激光偏振特性研究. 激光技术, 2009, 33(5): 509-511. doi: 10.3969/j.issn.1001-3806.2009.05.013
    [9] 甄海龙 . 一种金填充高双折射光子晶体光纤偏振滤波器. 激光技术, 2016, 40(1): 1-4. doi: 10.7510/jgjs.issn.1001-3806.2016.01.001
    [10] 李立卫王加贤王娟娟 . SESAM实现脉冲式Nd:YAG激光器的被动锁模特性研究. 激光技术, 2008, 32(3): 296-298,301.
    [11] 高丹盛荔金亓吴轲王梦樱陶音孔勇韩华 . 入射角度不敏感型石英光双折射滤波器. 激光技术, 2015, 39(3): 329-332. doi: 10.7510/jgjs.issn.1001-3806.2015.03.010
    [12] 邓之兵李岩韩艳梅张书练 . 用双折射激光频率分裂原理实现的静态与动态测量方法. 激光技术, 1999, 23(1): 29-33.
    [13] 王婉琳王蓟徐廉伟张家瑞 . 基于半导体可饱和吸收镜的可调谐光纤激光器. 激光技术, 2019, 43(5): 672-675. doi: 10.7510/jgjs.issn.1001-3806.2019.05.016
    [14] 林加强戴川生姚培军许立新 . 单波长和双波长可调谐的掺镱锁模光纤激光器. 激光技术, 2023, 47(3): 301-304. doi: 10.7510/jgjs.issn.1001-3806.2023.03.002
    [15] 张剑李国华 . 一种新的Lyot型双折射调谐滤光片. 激光技术, 2005, 29(6): 639-640,648.
    [16] 陈龙辉谢芳郭晓蕾郭哲灿 . 可调谐单纵模多波长光纤激光器的研究. 激光技术, 2021, 45(6): 681-685. doi: 10.7510/jgjs.issn.1001-3806.2021.06.001
    [17] 曹玲杨玲珍郭雄英周希坚 . 非线性光纤环形镜掺铒光纤激光器的实验研究. 激光技术, 2007, 31(6): 613-615,619.
    [18] 杨玲珍王云才陈国夫王屹山赵卫 . 1053nm超短脉冲光纤激光的产生. 激光技术, 2007, 31(6): 610-612.
    [19] 张大勇刘仓理李剑峰罗飞骆永全沈志学刘海涛李建明 . 楔型液晶盒对入射激光偏振态的影响. 激光技术, 2006, 30(6): 636-637,660.
    [20] 袁易君 . 主被动锁模脉冲氙灯抽运Nd:YAG激光器的研究. 激光技术, 2011, 35(3): 412-414,417. doi: 10.3969/j.issn.1001-3806.2011.03.032
  • 加载中
图(7)
计量
  • 文章访问数:  7312
  • HTML全文浏览量:  5466
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 录用日期:  2018-05-04
  • 刊出日期:  2019-01-25

可调谐被动锁模掺铥光纤激光器

    通讯作者: 张祖兴, zxzhang@njupt.edu.cn
    作者简介: 杜鹃(1996-),女,大学本科生,主要研究方向为掺铥光纤激光器
  • 南京邮电大学 电子与光学工程学院 先进光子技术实验室,南京 210023
基金项目:  江苏省“六大人才高峰”资助项目 2015-XCL-023江苏省自然科学基金资助项目 BK20161521大学生创新创业训练计划资助项目 SZD2017010

摘要: 为了实现波长可调谐被动锁模掺铥光纤激光器,提出了基于激光腔随机双折射效应通过调节激光偏振态来改变被动锁模掺铥光纤激光器的工作波长的方法,并进行了原理分析和实验验证。结果表明,调节偏振控制器可实现在2010nm,2019nm,2024nm,2050nm等多个中心波长处的锁模脉冲输出,同时在单个中心波长附近,还可以精密调谐。这种可调谐锁模激光器结构简单、可调谐性好,对光通信、超快光学、医学、遥感技术和雷达等应用中光源的选择有一定的参考价值。

English Abstract

    • 日益成熟的光纤通信技术在一定程度上推动了信息化时代的发展进程。光纤激光器作为光纤通信的理想光源,成为继固体激光器问世以来的又一大新发明。相对于传统的固体激光器,光纤激光器对环境要求低、与光纤系统的耦合性好、转换效率高、结构小巧灵活,更加适合实际应用[1]。和传统的掺铒光纤激光器、掺镱光纤激光器相比,掺铥光纤激光器输出的激光波段在2μm,同样处于光纤通信的低损耗窗口,也可应用于空间光通信。同时,2μm波段是人眼安全波段,水分子在此波段有强烈的吸收峰,使得掺铥光纤激光器对人体的软组织结构有切割、汽化等作用[2],因而,掺铥光纤激光器在生物学和医疗方面也有重大的应用前景。2μm掺铥光纤激光器在输出窄线宽和高脉冲能量方面更有优势,是光学参量振荡器不可或缺的抽运源,通过非线性转换可以获得中红外波段的激光[3]。不仅如此,2μm激光器是气体探测中特别具有吸引力的光源,如对CO2的探测就可以使用这种光源[4]

      近年来,波长可调谐的脉冲光纤激光器作为光源在光波分复用-时分复用通信系统中发挥着重要作用。与连续光纤激光器相比,脉冲光纤激光器在保证高光束质量、高环境稳定性、高光光转换率的同时,激光峰值功率更高;锁模脉冲光纤激光器可以产生稳定高重复频率的超短光脉冲,是较为理想的通信用光源。相较于主动锁模方式,被动锁模激光器结构简单、成本低、应用范围更加广泛[5-7]。常见的被动锁模方式有可饱和吸收体锁模[8],非线性光纤环形镜锁模[9]和非线性偏振旋转锁模[10]。基于可饱和吸收体的掺铥光纤激光器环境稳定性相对较高,直接将参量合适的可饱和吸收体置于激光腔内就能实现锁模, 但是损伤阈值低,输出功率低。2012年, 俄罗斯科学院CHERNYSHEVA等人[11]提出一种基于可饱和吸收体的锁模掺铥光纤激光器,腔内采用高掺杂浓度锗硅光纤进行色散管理,实现了重复频率52.6MHz,脉宽230fs的2μm锁模脉冲。随着碳纳米管、金纳米棒、二硫化钼等新型被动锁模材料的出现,可饱和吸收体锁模受到广泛关注。吉林大学KANG等人[12]提出了一种利用金纳米棒作为可饱和吸收体的被动锁模掺铥光纤激光器,得到了脉宽为4.02ps、重复频率为37.49MHz、中心波长为1982nm、输出功率为6mW的脉冲激光;非线性环形镜锁模激光器只能工作在重复频率较低的情况下[13]。2014年,LI等人报道了基于非线性光学环形镜的被动锁模光纤激光器,得到脉宽为2.8ps、重复频率为1.514MHz、中心波长为2017nm的锁模脉冲输出[14]。相比而言,基于非线性偏振旋转的锁模激光器输出性质较好,可等效于快速可饱和吸收体,在不进行色散管理的情况下就可以获得超短脉冲输出[15],基于非线性偏振旋转效应还可以实现波长可调谐光纤激光器[16]

      波长可调谐激光器可为实际应用提供波长可选择光源,为了实现波长可调谐被动锁模掺铥光纤激光器,作者提出了基于激光腔随机双折射效应,通过调节激光腔偏振态改变被动锁模掺铥光纤激光器工作波长。结果表明,调节偏振控制器,可实现锁模摻铥光纤激光器在宽带范围内调谐。

    • 可调谐被动锁模掺铥光纤激光器实验装置示意图如图 1所示。选用793nm多模抽运源作为抽运激光器,用一个合束器将抽运光耦合进掺铥光纤,长度为3.6m的双包层掺铥光纤(SM-TDF-10P/130-HE)作为增益光纤,其在2050nm波长处的二阶色散系数为-91ps2/km,环形腔的锁模部分由偏振相关隔离器与两个偏振控制器构成,利用耦合比10:90的耦合器将腔内10%的能量输出,90%的能量继续在腔内循环。腔内光器件尾纤与普通单模光纤(SM-28e)共9.5m,在2050nm波长处的2阶色散系数为-91ps2/km,计算的腔内总色散值为-1.19ps2/km。实验前利用MATLAB编程对激光器各部分器件建模,采用分步傅里叶法分析色散和非线性效应对激光腔的影响,进行仿真实验后,对腔内总色散,耦合器的耦合比等参量以及锁模器件所处位置进行不断调整,直到锁模脉冲输出更加稳定,激光器的结构得以优化并最终确定下来。

      Figure 1.  Experimental schematic diagram of tunable passively mode-locked thulium-doped fiber laser

      基于非线性偏振旋转效应被动锁模的基本原理如下:激光器产生的噪声脉冲光经过起偏器后变为线偏振光,再经过偏振控制器(polarization controller, PC)PC1后,偏振态改变成为椭圆偏振光,该椭圆偏振光可以单向传入单模光纤,光纤中的克尔效应会引起随光强变化的折射率改变,因此导致了光场的自相位调制,进而椭圆偏振光会产生非线性相移。将此椭圆偏振光分解为偏振方向相互垂直的xy方向的线偏振光,由于非线性相移的积累量与脉冲强度有关,所以xy两线偏振光积累不同的相移,经过偏振控制器PC2后,椭圆偏振光的方向角发生偏转,因而光脉冲内部不同部位偏振光旋转的角度不同。由于光脉冲中心功率高于前后沿,所以中心获得更多的非线性相移,通过调节PC2,使得中心椭圆偏振光能够以较小的损耗通过检偏器,而前后沿因为受到较大损耗被抑制,无法通过检偏器。这样的被动锁模原理类似于可饱和吸收体,脉冲不断被压窄,最终能够实现稳定锁模[17]

    • 实验中,当抽运光功率小于锁模阈值时,激光器处于连续工作状态。增大抽运光功率到3.5W,通过调节偏振控制器,不断优化激光偏振态,实现了中心波长为2020nm被动锁模脉冲输出,锁模脉冲光谱3dB带宽为20nm(做高斯脉冲假设,对应的变化极限脉冲宽度为281fs),锁模脉冲重复频率为15.25MHz,此时脉冲激光输出平均功率为56mW,脉冲能量3.7nJ。若偏振态保持不变,而继续增加抽运光功率,锁模脉冲光谱的包络形状仍可以保持基本不变,当抽运功率增加到6W时,激光输出功率增大为108mW。图 2所示为抽运光功率不断增加时,锁模脉冲输出光谱的变化。从图中可以看出,随着抽运光功率的增加,中心波长会有一点红移,3dB带宽有所增大。图 3所示为输出脉冲功率经过衰减后与示波器连接测得的锁模脉冲,重复频率为15.2MHz,与计算结果相吻合。利用射频谱分析仪在1GHz范围进行扫描,得到的射频谱如图 4所示。可见基频重复频率也为15.2MHz,与根据腔长计算得出的重复频率也吻合。另外,在1GHz范围内测出的射频谱并未受到调制,表明激光器工作在稳定锁模状态。

      Figure 2.  Relationship between intensity and wavelength under different pump powers

      Figure 3.  Output train of mode-locked pulse

      Figure 4.  RF spectrum of mode-locked pulse

      利用光功率计测10%输出端的平均输出功率大小,可以得到随抽运光功率的增加,激光器输出功率呈线性变化,如图 5所示,10%输出端平均输出功率斜率效率约为5%。

      Figure 5.  Relationship between output power and pump power

      在抽运功率不改变时,通过缓慢地调节偏振控制器,稍微改变偏振态,发现在某个中心波长附件锁模脉冲光谱可以精密调谐。如图 6所示, 抽运功率保持为3.8W不变,在中心波长2050nm附近,偏振态的变化会带来中心波长的微小移动,实现了在不同波长的锁模脉冲产生。进一步,继续保持抽运功率不变,大范围调节偏振控制器,发现在距中心波长2050nm较远的波长处也可以实现锁模光谱脉冲输出,即在多个中心波长处均可以实现锁模脉冲输出,结果如图 7所示。锁模脉冲在宽波长范围调谐和单中心波长附近精密调谐都原因都是由于光纤激光腔具有固有双折射引起的[18-19],通过调节偏振控制器可以控制激光腔的固有双折射导致的等效滤波效应,实现脉冲激光波长大范围可调和小范围精密调谐。

      Figure 6.  Finely tuning of mode-locked pulse spectrum near 2050nm wavelength under the same pump light power condition

      Figure 7.  Tuning of mode-locked pulse spectrum with broad spectral range under the same pump light power condition

    • 研究了基于非线性偏振旋转效应的可调谐被动锁模掺铥光纤脉冲激光器。在实验中发现,通过控制抽运光功率和调节偏振控制器,引起光纤激光腔偏振态的变化,从而实现了锁模波长在宽带范围内的可调谐,并且在各个中心波长处锁模脉冲可以稳定输出。这种可调谐锁模激光器结构简单,可调谐性好,并且掺铥光纤激光器工作在2μm人眼安全波段,对光通信、超快光学、医学、遥感技术和雷达等应用中光源的选择有一定的参考价值。

参考文献 (19)

目录

    /

    返回文章
    返回