高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双孔单元四边形晶格光子晶体光纤特性的研究

刘旭安 程和平 焦铮

引用本文:
Citation:

双孔单元四边形晶格光子晶体光纤特性的研究

    作者简介: 刘旭安(1984-),男,硕士,助教,现主要从事光纤传感、光纤通信的研究。E-mail:liuxan@hsu.edu.cn.com/liuxan@163.com.
  • 基金项目:

    黄山学院人才启动资助项目 2016xkjq001

    安徽省高等学校自然科学研究重点资助项目 KJ2018A0406

  • 中图分类号: TN253

Properties of regular-lattice photonic crystal fiber based on a double-hole unit

  • CLC number: TN253

  • 摘要: 为了获得双空气孔单元四边形晶格排列光子晶体光纤的光学特性,采用有限元分析法对该型光纤进行了数值模拟计算,得到了该型光纤的双折射、限制损耗、偏振拍长及色散特性结果。结果表明,与椭圆空气孔方形晶格排列光子晶体光纤相比,在相同的空气占空比条件下,双空气孔单元方形晶格排列光子晶体光纤可以获得更高的双折射特性,达到10-2量级;该型光纤两偏振模的限制损耗差可达103量级。该型光纤易于制造,在光纤通信及光纤传感等领域有一定的应用前景。
  • Figure 1.  a—cross section of the proposed photonic crystal fiber based on a double-hole uint b—cross section of the proposed photonic crystal fiber based on a elliptical-hole uint

    Figure 2.  Effective index of x-polarized and y-polarized fundamental modes as a function of wavelength

    Figure 3.  Birefringence property of the proposed SL-DH-PCF and the SL-EH-PCF

    Figure 4.  Confinement loss of the proposed SL-DH-PCF and the SL-EH-PCF

    Figure 5.  Beat length of the proposed SL-DH-PCF and the SL-EH-PCF

    Figure 6.  Dispersion of the proposed SL-DH-PCF and the SL-EH-PCF

    Figure 7.  Effective index of x-polarized and y-polarized fundamental modes as a function of wavelength for the proposed PCF

    Figure 8.  Confinement loss of the proposed PCF

    Figure 9.  Cross-section of the Rectangular-lattice PCF based on a double-hole unit

    Figure 10.  Birefringence property of the proposed RL-DH-PCF with different γ when Λ2=1.0μm

    Figure 11.  Birefringence property of the proposed RL-DH-PCF with different γ when Λ2=1.5μm

    Figure 12.  Confinement loss of the proposed RL-DH-PCF with different

  • [1]

    CHEN D, SHEN L. Highly birefringent elliptical-hole photonic crystal fibers with double defect[J]. Journal of Lightwave Technology, 2007, 25(9): 2700-2705. doi: 10.1109/JLT.2007.902114
    [2]

    CHEN D R, WU G Zh. Highly birefringent photonic crystal fiber based on a double-hole unit[J]. Applied Optics, 2010, 49(9): 1682-1686. doi: 10.1364/AO.49.001682
    [3]

    LIU X A, WU G Zh, CHEN D R, et al. Novel highly bireferingent photonic crystal fiber based on an elliptical hole fiber cladding and a fiber core of double-micro-hole units[J]. Acta Photonica Sinica, 2011, 40(11): 1728-1732(in Chinese). doi: 10.3788/gzxb
    [4]

    MUSIDEKE M, YAO J Q, LU Y, et al. High birefringence and high nonlinear octagonal photonic crystal fiber with low confinement loss[J]. Infrared and Laser Engineering, 2013, 42(12): 3373-3379. 
    [5]

    XU K, LU Sh Y, YANG Y. Research of CO2 gas sensors based on photonic crystal fiber[J]. Laser Technology, 2017, 41(5): 693-696 (in Chinese). 
    [6]

    ZHANG X D, CHEN N, NIE F K, et al.Dispersion characteristics analysis of photonic crystal fibers based on structure parameters and filling modes[J]. Laser Technology, 2018, 42(1): 48-52 (in Chinese). 
    [7]

    ZHANG W, LI Sh G, AN G W, et al.Double-cladding rectangular-lattice birefringence photonic crystal fiber with elliptical air holes[J]. Optical & Quantum Electronics, 2015, 47(8): 2649-2657. 
    [8]

    YANG J F, CHEN M. Design of photonic crystal fiber based on hexagon-lattice circle air hole with high birefringence[J]. Journal of Guilin University of Electronic Technology, 2016, 36(4): 279-283 (in Chinese). 
    [9]

    ZHOU M H, HUANG Y L. Highly bireferingent photonic crystal fiber based on lattice structure of elliptic layer[J]. Acta Photonica Sinica, 2016, 45(3): 0106002(in Chinese). 
    [10]

    GU Q Zh, LI Q H. Novel photonic crystal fiber with high bireferingence and low loss[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060603(in Chinese).
    [11]

    WANG J Y, CAO Y, LU Y J, et al. A novel high bireferingent photonic crystal fiber based on Schott glass[J]. Acta Photonica Sinica, 2014, 43(7): 0706020(in Chinese). doi: 10.3788/gzxb
    [12]

    CAI H J, SHEN Sh J, LIU X Sh.Photonic crystal fiber with Yb3+-doped aluminosilicate glass core[J]. Laser Technology, 2017, 41(5): 759-763(in Chinese).
    [13]

    ZHEN H L.Polarization filters based on high birefringence photonic crystal fiber filled with Au[J]. Laser Technology, 2016, 40(1): 1-4(in Chinese). 
    [14]

    WU X X, FAN W D, LIAO W Y, et al. High bireferingence in graphene structure photonic crystal fiber[J]. Acta Photonica Sinica, 2016, 45(1):0106002(in Chinese). doi: 10.3788/gzxb
    [15]

    LIU Y C, LAI Y. Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: numerical analysis[J]. Optics Exppress, 2005, 13(1): 225-235. doi: 10.1364/OPEX.13.000225
    [16]

    WANG L, YANG D X. Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core[J]. Optics Express, 2007, 15(14): 8892-8897 doi: 10.1364/OE.15.008892
    [17]

    LIAO J F, SUN J Q.High birefringent rectangular-lattice photonic crystal fibers with low confinement loss employing different sizes of elliptical air holes in the cladding[J]. Optical Fiber Technology, 2012, 18(6): 457-461. doi: 10.1016/j.yofte.2012.07.006
    [18]

    SHENG Y, LU J, YAO G F, et al. Analysis of highly bireferingent and confinement loss of elliptical air-holes rectangular photonic crystal fiber[J]. Acta Photonica Sinica, 2014, 43(s1): 0106008(in Chinese).
    [19]

    ZHANG X D, NIE F K, LU X L, et al. The characteristic analysis of microstructure photonic crystal fibers based on regular quadrilateral lattice[J]. Optical Instruments, 2017, 39(4): 18-24 (in Chinese). 
    [20]

    ORTIGOSA-BLANCH A, KNIGHT J C, WADSWORTH W J. Highly birefringent photonic crystal fibers[J]. Optics Letters, 2000, 25(18): 1325-1327. doi: 10.1364/OL.25.001325
    [21]

    NAMIHIRA Y, LIU J J, KOGA T, et al. Design of highly nonlinear octagonal photonic crystal fiber with near-zero flattened dispersion at 1.31μm waveband[J]. Optical Review, 2011, 18(6): 436-440. doi: 10.1007/s10043-011-0082-3
  • [1] 姜凌红侯蓝田邹金红侯宇 . 平坦色散低限制损耗光子晶体光纤的设计. 激光技术, 2011, 35(1): 61-64. doi: 10.3969/j.issn.1001-3806.2011.01.018
    [2] 甄海龙 . 一种金填充高双折射光子晶体光纤偏振滤波器. 激光技术, 2016, 40(1): 1-4. doi: 10.7510/jgjs.issn.1001-3806.2016.01.001
    [3] 宋德君谢康肖峻 . 基于有限元光子晶体光纤的模场与色散分析. 激光技术, 2012, 36(1): 111-113,117. doi: 10.3969/j.issn.1001-3806.2012.01.028
    [4] 张学典陈楠聂富坤逯兴莲常敏 . 基于结构和填充的光子晶体光纤色散分析. 激光技术, 2018, 42(1): 48-52. doi: 10.7510/jgjs.issn.1001-3806.2018.01.010
    [5] 何丁丁刘敏简多李丹廖洲一 . 空芯光子晶体光纤损耗的研究. 激光技术, 2013, 37(2): 243-246. doi: 10.7510/jgjs.issn.1001-3806.2013.02.026
    [6] 钱诗婷廖秋雨高翔张克非 . 填充型增敏式光子晶体光纤压力传感器结构. 激光技术, 2021, 45(2): 224-228. doi: 10.7510/jgjs.issn.1001-3806.2021.02.017
    [7] 廖洲一刘敏钱燕何丁丁简多 . 八角格子色散补偿光纤. 激光技术, 2013, 37(4): 506-510. doi: 10.7510/jgjs.issn.1001-3806.2013.04.020
    [8] 詹仪李效增郑义 . 光子晶体光纤的色散特性分析. 激光技术, 2009, 33(1): 24-26.
    [9] 吕欢祝余明芯钟文博张克非 . 大模场低损耗光子晶体光纤的研究与设计. 激光技术, 2021, 45(2): 196-201. doi: 10.7510/jgjs.issn.1001-3806.2021.02.012
    [10] 王润轩 . 高非线性光子晶体光纤接续损耗的数值研究. 激光技术, 2008, 32(3): 302-304.
    [11] 陆丹葛廷武伍剑徐坤林金桐 . D形双包层大模场光纤激光偏振特性研究. 激光技术, 2009, 33(5): 509-511. doi: 10.3969/j.issn.1001-3806.2009.05.013
    [12] 奚小明陈子伦刘诗尧侯静姜宗福 . 光子晶体光纤与普通光纤的耦合熔接. 激光技术, 2011, 35(2): 202-205. doi: 10.3969/j.issn.1001-3806.2011.02.017
    [13] 钱燕刘敏杨静马云华 . 正方形五芯光子晶体光纤的耦合特性分析. 激光技术, 2014, 38(4): 455-458. doi: 10.7510/jgjs.issn.1001-3806.2014.04.005
    [14] 黄建军李港陈檬庞庆生毕向军 . 光子晶体光纤色散特性的数值分析. 激光技术, 2006, 30(4): 432-435.
    [15] 王润轩 . 色散补偿双芯光子晶体光纤的数值研究. 激光技术, 2008, 32(6): 576-578,589.
    [16] 温芳门艳彬孟义昌张书敏 . 基于光子晶体光纤的高斯脉冲光谱压缩数值研究. 激光技术, 2015, 39(1): 65-70. doi: 10.7510/jgjs.issn.1001-3806.2015.01.013
    [17] 蔡辉剑沈淑娟刘献省 . 掺Yb3+铝硅酸盐玻璃纤芯的光子晶体光纤. 激光技术, 2017, 41(5): 759-763. doi: 10.7510/jgjs.issn.1001-3806.2017.05.028
    [18] 朱虹茜叶涛张克非 . 光子晶体光纤高灵敏度压力传感特性研究. 激光技术, 2019, 43(4): 511-516. doi: 10.7510/jgjs.issn.1001-3806.2019.04.014
    [19] 成纯富王又青别业广 . 双零色散点光子晶体光纤中红移辐射的产生. 激光技术, 2010, 34(1): 120-123. doi: 10.3969/j.issn.1001-3806.2010.01.034
    [20] 孙太龙励强华刘晶会刘颖 . 高非线性色散平坦光子晶体光纤的理论研究. 激光技术, 2008, 32(3): 330-333.
  • 加载中
图(12)
计量
  • 文章访问数:  6669
  • HTML全文浏览量:  4917
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 录用日期:  2018-05-23
  • 刊出日期:  2019-01-25

双孔单元四边形晶格光子晶体光纤特性的研究

    作者简介: 刘旭安(1984-),男,硕士,助教,现主要从事光纤传感、光纤通信的研究。E-mail:liuxan@hsu.edu.cn.com/liuxan@163.com
  • 1. 黄山学院 信息工程学院,黄山 245041
  • 2. 中国科学院 安徽光学精密机械研究所 光子器件与材料安徽省重点实验室,合肥 230031
基金项目:  黄山学院人才启动资助项目 2016xkjq001安徽省高等学校自然科学研究重点资助项目 KJ2018A0406

摘要: 为了获得双空气孔单元四边形晶格排列光子晶体光纤的光学特性,采用有限元分析法对该型光纤进行了数值模拟计算,得到了该型光纤的双折射、限制损耗、偏振拍长及色散特性结果。结果表明,与椭圆空气孔方形晶格排列光子晶体光纤相比,在相同的空气占空比条件下,双空气孔单元方形晶格排列光子晶体光纤可以获得更高的双折射特性,达到10-2量级;该型光纤两偏振模的限制损耗差可达103量级。该型光纤易于制造,在光纤通信及光纤传感等领域有一定的应用前景。

English Abstract

    • 光子晶体光纤(photonic crystal fiber, PCF)又称多孔微结构光纤,由于光子晶体光纤设计方式的灵活性,通过设计光子晶体光纤截面微孔的尺寸、排列方式、填充不同的物质等方式,可以实现光子晶体光纤独特的光学性质,如和传统光纤相比,它可以实现更高的双折射。近年来,一些文献中介绍了通过对折射率传导型光子晶体光纤结构的设计[1-9]和不同材料的应用[10-14],来实现高双折射特性的方法,如纤芯采用非对称性结构;包层引入非对称性空气孔阵列;或者采用不同的材料等。另外,参考文献[15]~参考文献[19]中对圆空气三角晶格方式排列型光子晶体光纤和圆空气四边形晶格方式排列型光子晶体光纤之间的色散特性进行了数值模拟和分析,同时,对椭圆空气三角晶格方式排列型光子晶体光纤和椭圆空气四边晶格方式排列型光子晶体光纤之间的双折射特性也进行了分析。

      本文中介绍了一种基于圆形双空气孔单元的方形和矩形角晶格排列的新型高双折射光子晶体光纤,简称为圆形双空气孔单元四边形晶格排列型光子晶体光纤(square-and rectangular-lattice based on the double-hole units photonic crystal fiber, S/RL-DH-PCF)。该型光纤截面上两相同圆形空气孔沿着纵轴排列组成一个基本的空气孔单元,空气孔单元按照方形或矩形晶格方式进行排列构成该型光纤的包层基本结构,在截面中心处移除一组空气孔单元构成该型光纤的纤芯。由于空气孔的表面张力,在制造过程中,空气孔总是趋向于圆形,保持一定形状的椭圆空气孔比较难以控制,因此,采用圆形空气孔可以使制造过程中结构的变形达到最小化。另外,椭圆形空气孔结构之所以能够实现高双折射,是因为其结构能够使两偏振方向上的占空比实现差异化,而双孔单元空气孔结构同样能够实现这个功能,因此,这种光纤具有和椭圆空气孔四边形晶格方式排列型光子晶体光纤类似的高双折射特性且更容易制造。

      本文中采用有限元分析法,边界采用完美匹配层,在不同的结构参量及工作波长在1.20μm~1.80μm之间变化的条件下,对该型光子晶体光纤进行了数值模拟分析。结果显示,和之前报道过的椭圆空气方形晶格方式排列型光子晶体光纤相比,在相同的空气孔占空比条件下,该圆形双空气孔单元方形晶格排列型光子晶体光纤可以获得更高的双折射特性,可以达到10-2量级。此外还发现, 与三角晶格方式排列型光子晶体光纤相比,该型光子晶体光纤更容易获得高双折射,且该型光子晶体光纤空气孔与采用矩形晶格方式排列相比,采用方形晶格方式排列更容易获得高偏振相关损耗。

    • 为了更好地展现该型光子晶体光纤的光学特性,同时给出了圆形双空气孔单元方形晶格排列型光子晶体光纤(square-lattice based on a lattice structure of double-hole units photonic crystal fiber, SL-DH-PCF)和椭圆形双空气孔单元方形晶格排列型光子晶体光纤(square-lattice based on the elliptical-hole photonic crystal fiber, SL-EH-PCF),并将两者的特性进行了对比。

      图 1a中给出的是圆形双空气孔单元方形晶格排列型光子晶体光纤。两相同的圆形空气孔沿纵轴排列,组成空气孔单元。每一个空气孔的半径为R,两空气孔中心之间的间距为H。圆形空气孔单元以方形晶格方式进行排列组成整个光纤横截面,单元之间的间距为晶格间距,记为Λ。移除光纤横截面中心处一组空气孔单元组成光纤的纤芯,其它空气孔单元构成光纤的包层。图 1b中给出的是椭圆形双空气孔单元方形晶格排列型光子晶体光纤。该型光纤和图 1a中给出的光纤的占空比相同。椭圆形空气孔单元以方形晶格方式进行排列组成整个光纤横截面,椭圆形空气孔之间的晶格间距为Λ,椭圆率为η。两光纤空气孔的折射率为1,介质材料的折射率由下列Sellmeier色散公式[3]所决定:

      $ \begin{array}{l} {n^2} = 1 + \frac{{0.6961663{\lambda ^2}}}{{{\lambda ^2} - {{\left( {0.0684043} \right)}^2}}} + \\ \frac{{0.4079426{\lambda ^2}}}{{{\lambda ^2} - {{\left( {0.1162414} \right)}^2}}} + \frac{{0.8974794{\lambda ^2}}}{{{\lambda ^2} - {{\left( {9.896161} \right)}^2}}} \end{array} $

      (1)

      Figure 1.  a—cross section of the proposed photonic crystal fiber based on a double-hole uint b—cross section of the proposed photonic crystal fiber based on a elliptical-hole uint

      式中, n为介质材料的折射率; λ为工作波长,单位为μm。在计算过程中,两光纤的晶格间距设定为Λ=1.0μm。

      采用有限元分析法对两光纤的导模进行数值分析。边界条件定为采用完美匹配层。光纤的模双折射[20]定义为:

      $ \Delta n = {n_{{\rm{eff}}, y}} - {n_{{\rm{eff}}, x}} $

      (2)

      式中, neff, yneff, x分别为光纤y偏振方向和x偏振方向各自基模的有效折射率。光纤的限制损耗[21]可由基模复数有效折射率的虚部求得,求解公式为:

      $ L = 8.686 \times \frac{{2{\rm{ \mathsf{ π} }}}}{\lambda }{\rm{Im}}({n_{{\rm{eff}}}}) $

      (3)

      两偏振方向上的偏振模之间的偏振拍长Lb为:

      $ {L_{\rm{b}}} = \frac{\lambda }{{\Delta n}} $

      (4)

      光纤的色散系数(其单位为ps·km-1·nm-1)可以定义为:

      $ D = - \frac{\lambda }{c}\cdot{\rm{ }}\frac{{{{\rm{d}}^2}{\rm{Re}}({n_{{\rm{eff}}}})}}{{{\rm{d}}{\lambda ^2}}} $

      (5)

      式中, neff为模式的有效折射率,c为光速。

      图 2中给出了两型光纤x偏振方向和y偏振方向各自基模的有效折射率随工作波长变化的曲线。其中实心符号曲线表示x偏振方向,空心符号曲线表示y偏振方向。圆形符号曲线表示SL-DH-PCF的两偏振方向有效折射率变化曲线,三角形符号曲线表示SL-EH-PCF的两偏振方向有效折射率变化曲线。两光纤的结构参量为Λ=1.0μm,R=0.2μm, H=0.5μm, η=1.5, 空气占空比都为f=25.13%。结果显示两光纤x偏振方向比y偏振方向具有更高的基模有效折射率。插图为工作波长为λ=1.55 μm时,两型光纤x偏振方向基模的电场分布图(其中左下图为SL-DH-PCF,右上图为SL-EH-PCF)。

      Figure 2.  Effective index of x-polarized and y-polarized fundamental modes as a function of wavelength

      图 3中给出了SL-DH-PCF和SL-EH-PCF两种不同光纤在不同结构参量条件下的双折射特性。其中SL-EH-PCF椭圆空气孔的椭圆率η分别为1.3和1.5。对比文献中介绍的关于SL-EH-PCF的双折射特性,结果显示当SL-DH-PCF的几何结构参量为Λ=1.0μm, R=0.2μm, H=0.5μm时,其高双折射特性要优于椭圆率η分别为1.3和1.5时SL-EH-PCF的高双折射特性。此外发现, SL-DH-PCF的双圆形空气孔单元对该光纤的双折射具有重要的影响作用,特别是双圆形空气孔单元空气孔的半径R。从图 3可以看出, 当H=0.5μm保持不变时,SL-DH-PCF的双折射随着圆形空气孔半径的增大而迅速增大。而当R=0.2μm保持不变时,SL-DH-PCF的双折射随着空气孔单元两孔间距的变化而变化不是太大。

      Figure 3.  Birefringence property of the proposed SL-DH-PCF and the SL-EH-PCF

      图 4中给出了SL-DH-PCF和SL-EH-PCF两种不同光纤在相同的空气占空比条件下的限制损耗特性。结果显示, SL-DH-PCF在x偏振方向基模的限制损耗和SL-EH-PCF的近似,但在相同的空气占空比条件下,SL-DH-PCF比SL-EH-PCF具有更大的双折射。

      Figure 4.  Confinement loss of the proposed SL-DH-PCF and the SL-EH-PCF

      图 5中给出了SL-DH-PCF和SL-EH-PCF两种不同光纤在不同结构参量条件下的偏振拍长特性。结果显示, SL-DH-PCF比SL-EH-PCF的偏振拍长要短。当H=0.5μm保持不变时,SL-DH-PCF的偏振拍长随着圆形空气孔半径的变化而变化较大,圆形空气孔半径越大,偏振拍长越短; 而当R=0.2μm保持不变时,SL-DH-PCF的偏振拍长随着双空气孔单元两孔间距的变化而变化不是太大。

      Figure 5.  Beat length of the proposed SL-DH-PCF and the SL-EH-PCF

      图 6中给出了SL-DH-PCF和SL-EH-PCF两种不同光纤在不同结构参量条件下x偏振方向上的色散特性。结果显示, SL-DH-PCF和SL-EH-PCF在波长λ=1550nm处为负色散。

      Figure 6.  Dispersion of the proposed SL-DH-PCF and the SL-EH-PCF

    • 图 7中给出了该单偏振单模圆形双空气孔单元方形晶格排列型光子晶体光纤的有效折射率随工作波长变化的曲线。该型光纤包层有4层空气孔单元,即空气孔层数N=4, 其结构参量为Λ=2.3μm,R=0.4μm, H=1.0μm。左下角插图表示x偏振方向的基模电场分布图,右上角插图表示y偏振方向的基模电场分布图,对应的工作波长为λ=1.55μm。

      Figure 7.  Effective index of x-polarized and y-polarized fundamental modes as a function of wavelength for the proposed PCF

      图 8中给出了该型光纤在参量为R=0.4μm,H=1.0μm, Λ分别为2.2μm和2.3μm时, 对应的限制损耗随工作波长变化的曲线。

      Figure 8.  Confinement loss of the proposed PCF

    • 当改变SL-DH-PCF的双空气孔单元沿轴方向间距,同时保持其轴方向间距不变,那么圆形双空气孔单元方形晶格排列型光子晶体光纤(SL-DH-PCF)就变成圆形双空气孔单元矩形晶格排列型光子晶体光纤(RL-DH-PCF)。图 9中给出的是RL-DH-PCF的截面图。RL-DH-PCF的双空气孔单元沿x轴方向晶格间距记为Λ1,沿y轴方向晶格间距记为Λ2,晶格间距的宽高比γ=Λ1/Λ2。RL-DH-PCF的几何结构参量为Λ2=1.0μm, R=0.2μm, H=0.5μm。

      Figure 9.  Cross-section of the Rectangular-lattice PCF based on a double-hole unit

      图 10图 11中给出了在不同的γ参量条件下RL-DH-PCF的双折射特性。从两图中可以看出, 当Λ2保持不变且γ较大时,RL-DH-PCF的双折射随γ的减小而增大; 但当γ较小时,RL-DH-PCF的双折射变化随波长变化越来越平缓。此外将图 10图 11进行对比可以发现,当γ保持不变时,RL-DH-PCF的双折射随Λ2的增大而增大。因此可以得出, 晶格间距的宽高比γ可以有效地调控RL-DH-PCF的双折射特性。

      Figure 10.  Birefringence property of the proposed RL-DH-PCF with different γ when Λ2=1.0μm

      Figure 11.  Birefringence property of the proposed RL-DH-PCF with different γ when Λ2=1.5μm

      图 12中给出了在不同的γ参量条件下RL-DH-PCF的限制损耗特性。结果显示, RL-DH-PCF各自偏振基模限制损耗随γ的减小而增大,且y偏振方向和x偏振方向基模的限制损耗差随γ的减小而增大。

      Figure 12.  Confinement loss of the proposed RL-DH-PCF with different

    • 提出了一种基于双空气孔单元四角晶格排列光子晶体光纤。与椭圆空气孔方形晶格排列光子晶体光纤相比,在相同的空气占空比条件下,该型光子晶体光纤可以获得更高的双折射特性,达到10-2量级,且制造更容易。通过改变该型光纤晶格在横轴与纵轴方向上的间距,可以有效地控制该型光纤的双折射特性。此外, 通过改变该型光纤的结构参量可获得一种新型单偏振单模光纤。

参考文献 (21)

目录

    /

    返回文章
    返回