高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属光栅提高蓝光LED提取效率的研究

赵建伟 江孝伟 方晓敏 赵燕娟 葛正阳

引用本文:
Citation:

金属光栅提高蓝光LED提取效率的研究

    作者简介: 赵建伟(1965-),男,硕士,副教授,主要从事半导体光电子器件的研究。E-mail:diankejiang@126.com.
  • 基金项目:

    国家自然科学基金资助项目 61650404

    忂州市科技计划资助项目 2014Y017

    衢州职业技术学院新苗人才计划校级资助项目 QZY17X013

    浙江省教育厅科研资助项目 Y201738091

    忂州市科技计划资助项目 2017G16

    忂州市科技计划资助项目 2015Y018

  • 中图分类号: TN383

Study on improving the extraction efficiency of blue light LED by metal gratings

  • CLC number: TN383

  • 摘要: 为了提高发光二极管(LED)的光提取效率,并比较不同光栅形状对LED光提取效率的影响,采用严格耦合波法优化了与矩形、等腰三角形、等腰梯形光栅分别集成的倒装LED,使它们出光面透射率达到最优,随后使用有限时域差分法模拟计算它们的光提取效率。经过模拟计算和理论分析可得3种不同结构LED最优光栅参量(光栅占空比f、光栅周期p、光栅厚度h)和过渡层厚度d分别是:f=0.35, p=150nm, h=80nm, d=190nm; f=0.45, p=175nm, h=80nm, d=190nm; f=0.7, p=150nm, h=80nm, d=190nm。结果表明,3种最优的LED结构在波长0.4μm~0.5μm范围内,矩形光栅倒装LED和等腰三角形光栅倒装LED出光面透射率相同,等腰梯形光栅倒装LED出光面透射率最低; 由于光透射率最低,导致等腰梯形光栅倒装LED光提取效率较低,最高仅为58.07%,但是由于等腰三角形光栅倒装LED特殊的光栅形状加上高的光透射率,其光提取效率可以达到77.75%。此研究可以为制备高光提取效率LED提供理论方法指导。
  • Figure 1.  a—rectangular grating flip-chip LED b—isosceles trapezoidal grating flip-chip LED c—isosceles triangle grating flip-chip LED d—normal flip-chip LED

    Figure 2.  The influence of grating duty cycle on transmissivity

    Figure 3.  The influence of grating period on transmissivity

    Figure 4.  The influence of grating thickness on transmissivity

    Figure 5.  The influence of transition layer thickness on transmissivity

    Figure 6.  The influence of wavelength on transmissivity

    Figure 7.  The influence of wavelength on extraction

  • [1]

    JEON K S, YUH H K, CHOI Y H, et al. Comparison of the optimum number of quantum wells in GaN-based blue light-emitting diodes grown on sapphire and Si(111) substrates[J]. Journal of Nanoscience & Nanotechnology, 2017, 17(6):4235-4238. 
    [2]

    SEOK M S, YOO S J, CHOE J H, et al. Light extraction efficiency enhancement using surface-structured light-emitting diodes with a subwavelength coating[J]. Journal of the Korean Physical Society, 2016, 68(3):462-466. doi: 10.3938/jkps.68.462
    [3]

    LU L F, YE Zh Ch. Extraction efficiency and polarization induced by photonic crystal structure on GaN-based blue LED[J]. Acta Photonica Sinica, 2016, 45(11):1113001(in Chinese). doi: 10.3788/gzxb
    [4]

    JIANG X M, ZHU X Y, LU T, et al. Design and implementation of LED indoor light voice communication system[J]. Laser Technology, 2014, 38(6): 807-812(in Chinese). 
    [5]

    WANG M, CAO B, HU F Y, et al. High linearly polarized light emi-ssion from GaN-based LED with patterned dielectric/metal structures[J]. Proceedings of the SPIE, 2015, 9524:952414. doi: 10.1117/12.2189257
    [6]

    GOU Y Ch, XUAN Y M, HAN Y G, et al. A new method to enhance the light extraction efficiency of LED[J]. Journal of Engineering Thermophysics, 2012, 33(1):117-120(in Chinese). 
    [7]

    XIONG W P, FAN G H, LI Q. Improvement for light extraction efficiency of light emitting diodes[J]. Acta Photonica Sinica, 2010, 39(11):1956-1960(in Chinese). doi: 10.3788/gzxb
    [8]

    MATIOLI E, RANGEL E, IZA M, et al. High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals[J]. Applied Physics Letters, 2010, 96(3):031108. doi: 10.1063/1.3293442
    [9]

    YEH W L, FANG C M, CHIOU Y P. Enhancing LED light extraction by optimizing cavity and waveguide modes in grating structures[J]. Journal of Display Technology, 2013, 9(5):359-364. doi: 10.1109/JDT.2012.2229382
    [10]

    HUANG H W, KAO C C, CHU J T, et al. Improvement of InGaN-GaN light-emitting diode performance with a nano-roughened P-GaN surface[J]. IEEE Photonics Technology Letters, 2005, 17(5):983-985. doi: 10.1109/LPT.2005.846741
    [11]

    SONG Y M, PARK G C, JANG S J, et al. Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration[J]. Optics Express, 2011, 19(s2):A157-A165. doi: 10.1364/OE.19.00A157
    [12]

    WIERER J J, STRIEERWALD D A, KRAMES M R, et al. High-power AlGaInN flip-chip light-emitting diodes[J]. Applied Physics Letters, 2001, 78(22):3379-3381. doi: 10.1063/1.1374499
    [13]

    LI W, YUE Q Y, KONG F M, et al. Influence of surface ZnO nano-structures on the light emitting efficiency of GaN-based LED[J]. Acta Photonica Sinica, 2013, 42(4):409-416(in Chinese). doi: 10.3788/gzxb
    [14]

    LIU Sh R, WANG L, SUN Y J, et al. Improvement on the light extraction efficiency for LED by frustum of a cone array[J]. Acta Optica Sinica, 2018, 38(1):0122001(in Chinese). doi: 10.3788/AOS
    [15]

    LIU Sh R, WANG L, ZHANG M L, et al. Study of light extraction efficiency for LED with square aperture nano-hemisphere array[J]. Chinese Journal of Luminescence, 2017, 38(12):1668-1674(in Ch-inese). doi: 10.3788/fgxb
    [16]

    LIU H. Study on enhancing the light extraction efficiency of GaN-based light emitting diodes by photonic crystal and one dimensional grating structure[D]. Wuhan: Huazhong University of Science and Technology, 2014: 7-8(in Chinese).
    [17]

    YI Zh M. Improving light extraction efficiency of GaN-based LEDs by oxide micro & nano structures[D]. Ji'nan: Shandong University, 2014: 36-40(in Chinese).
  • [1] 江孝伟朱震郑盛梅 . 利用金属光栅提高LED发光效率的研究. 激光技术, 2022, 46(3): 368-373. doi: 10.7510/jgjs.issn.1001-3806.2022.03.011
    [2] 江达飞江孝伟张丽娜 . GaN基蓝光LED单偏振输出及高光提取效率的实现. 激光技术, 2019, 43(2): 184-188. doi: 10.7510/jgjs.issn.1001-3806.2019.02.007
    [3] 江达飞江孝伟方晓敏 . 利用ITO微纳结构提高石墨烯紫外LED光提取效率. 激光技术, 2021, 45(2): 186-190. doi: 10.7510/jgjs.issn.1001-3806.2021.02.010
    [4] 何胜军江达飞江孝伟王真富 . 1维高反射等腰三角形亚波长光栅的研究. 激光技术, 2020, 44(3): 288-298. doi: 10.7510/jgjs.issn.1001-3806.2020.03.014
    [5] 张岩蔚娟张俊香 . 两种透射率入射腔镜对894.6nm倍频腔转换效率的比较. 激光技术, 2022, 46(6): 784-787. doi: 10.7510/jgjs.issn.1001-3806.2022.06.012
    [6] 崔鸿忠李正佳范晓红 . 发光二极管光源疗法在生物医学中的应用. 激光技术, 2006, 30(6): 638-642,656.
    [7] 邓启威张蓉竹孙年春 . 矩形光栅局部结构误差对衍射效率的影响. 激光技术, 2019, 43(5): 635-640. doi: 10.7510/jgjs.issn.1001-3806.2019.05.009
    [8] 宋曼谷曹立强刘丰满薛海韵孙瑜李宝霞 . 硅基光栅耦合封装结构的优化设计. 激光技术, 2017, 41(4): 479-483. doi: 10.7510/jgjs.issn.1001-3806.2017.04.004
    [9] 钱立勇朱向冰崔海田王元航 . 微型投影系统光路设计. 激光技术, 2018, 42(3): 385-389. doi: 10.7510/jgjs.issn.1001-3806.2018.03.018
    [10] 简小华韩志乐崔崤峣董凤林 . 光声成像激励光源的现状及选用. 激光技术, 2017, 41(5): 712-717. doi: 10.7510/jgjs.issn.1001-3806.2017.05.019
    [11] 闫明宝周萍王海龙 . SiO2/Si光子晶体透射特性的数值研究. 激光技术, 2009, 33(1): 50-52,70.
    [12] 高健王庆康王丹燕 . 基于粒子群优化算法的透射滤光片设计. 激光技术, 2018, 42(5): 617-621. doi: 10.7510/jgjs.issn.1001-3806.2018.05.007
    [13] 缪正祥李重光张中恒 . 基于角谱理论的频移插值法衍射计算. 激光技术, 2014, 38(1): 87-90. doi: 10.7510/jgjs.issn.1001-3806.2014.01.019
    [14] 王玉明苗润才马静孟峰 . 低频水下声信号衍射光场的探测. 激光技术, 2013, 37(5): 686-689. doi: 10.7510/jgjs.issn.1001-3806.2013.05.027
    [15] 黄帅张伟席琪赵新华谢修敏徐强周强宋海智 . 1.55μm单光子源用Si/SiO2-InP微柱腔的鲁棒性研究. 激光技术, 2020, 44(5): 532-537. doi: 10.7510/jgjs.issn.1001-3806.2020.05.002
    [16] 褚状状游利兵王庆胜尹广玥陈亮方晓东 . 聚合物光纤光栅制备进展. 激光技术, 2018, 42(1): 11-18. doi: 10.7510/jgjs.issn.1001-3806.2018.01.003
    [17] 许国侯春萍沈丽丽 . 狭缝光栅立体显示光栅倾斜角度理论分析. 激光技术, 2016, 40(3): 388-391. doi: 10.7510/jgjs.issn.1001-3806.2016.03.018
    [18] 张茜赵尚弘楚兴春 . 严格耦合波法计算体布喇格光栅衍射效率. 激光技术, 2012, 36(4): 471-474. doi: 10.3969/j.issn.1001-806.2012.04.010
    [19] 陈新荣耿康吴建宏 . 介质膜光栅槽形无损检测方法的研究. 激光技术, 2005, 29(4): 423-425.
    [20] 刘燕燕姜凤贤侯佳鹏周宁武海生 . 带状光纤多波长阵列光栅刻写工艺研究. 激光技术, 2015, 39(4): 484-487. doi: 10.7510/jgjs.issn.1001-3806.2015.04.012
  • 加载中
图(7)
计量
  • 文章访问数:  7201
  • HTML全文浏览量:  5321
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-29
  • 录用日期:  2018-03-22
  • 刊出日期:  2019-01-25

金属光栅提高蓝光LED提取效率的研究

    作者简介: 赵建伟(1965-),男,硕士,副教授,主要从事半导体光电子器件的研究。E-mail:diankejiang@126.com
  • 1. 衢州职业技术学院 信息工程学院,衢州 324000
  • 2. 北京工业大学 电子信息与控制工程学院 光电子技术实验室,北京 100124
基金项目:  国家自然科学基金资助项目 61650404忂州市科技计划资助项目 2014Y017衢州职业技术学院新苗人才计划校级资助项目 QZY17X013浙江省教育厅科研资助项目 Y201738091忂州市科技计划资助项目 2017G16忂州市科技计划资助项目 2015Y018

摘要: 为了提高发光二极管(LED)的光提取效率,并比较不同光栅形状对LED光提取效率的影响,采用严格耦合波法优化了与矩形、等腰三角形、等腰梯形光栅分别集成的倒装LED,使它们出光面透射率达到最优,随后使用有限时域差分法模拟计算它们的光提取效率。经过模拟计算和理论分析可得3种不同结构LED最优光栅参量(光栅占空比f、光栅周期p、光栅厚度h)和过渡层厚度d分别是:f=0.35, p=150nm, h=80nm, d=190nm; f=0.45, p=175nm, h=80nm, d=190nm; f=0.7, p=150nm, h=80nm, d=190nm。结果表明,3种最优的LED结构在波长0.4μm~0.5μm范围内,矩形光栅倒装LED和等腰三角形光栅倒装LED出光面透射率相同,等腰梯形光栅倒装LED出光面透射率最低; 由于光透射率最低,导致等腰梯形光栅倒装LED光提取效率较低,最高仅为58.07%,但是由于等腰三角形光栅倒装LED特殊的光栅形状加上高的光透射率,其光提取效率可以达到77.75%。此研究可以为制备高光提取效率LED提供理论方法指导。

English Abstract

    • 发光二极管(light-emitting diode,LED)作为一种替代荧光灯和白炽灯的新一代光源[1],由于具有体积小、能耗低、寿命长、效率高等特点吸引了很多的关注[2-4]。现今在LED研究领域上更多的是提高其发光效率[5]。LED的发光效率是由光提取效率和内量子效率决定[6]。随着技术的发展,材料生长技术已经越来越精湛,内量子效率可以几乎达到100%[7]。因此现今主要研究内容是如何提高LED的光提取效率。光子晶体技术[8]、光栅技术[9]、表面粗化技术[10]、仿生技术[11]、倒装技术[12]等均被利用在提高LED光提取效率上。

      表面粗化技术虽然可以提高光提取效率,但是该技术容易增加GaN层出光面的缺陷,甚至会破坏有源区降低LED的内量子效率;LED倒装技术自2001年被提出后已经被商业化,不过倒装LED的光提取效率对P-GaN层厚度非常敏感,P-GaN层厚度微弱的变化都会导致LED光提取效率大幅度的降低或升高;在LED出光面制作类蛾眼结构已经被证实对提高LED光提取效率确实有很多帮助,可是该技术对工艺要求非常高,不利于产业化;光子晶体技术和光栅技术分别是用光子禁带效应和光栅衍射效应或表面等离子激元来提高LED的光提取效率,相对于光栅技术,光子晶体技术所需成本要高,因此基于生产成本考虑,使用光栅技术相对而言是一种更为有效合理的技术在提高LED的光提取效率上。

      虽然已知在LED出光面刻蚀一层光栅可以提高LED的光提取效率,但是不同的人会选择不同的光栅形状,而且经过研究,不同的光栅形状实现的光提取效率是不同的。LI等人将等腰三角形光栅与正装LED集成,经过对器件的优化实现了25%的光提取效率[13]。SEOK等人使用倒装LED与等腰三角形光栅集成,在中心波长450nm上实现了66%的光提取效率[2]。长春理工大学SUN教授团队使用梯形光栅与正装LED集成,对器件优化后实现的光提取效率是无光栅结构LED的4.8倍[14];同年他们还将半圆形光栅与正装LED集成,通过理论计算得到的光提取效率是无光栅结构的6倍[15]

      上述研究分别将不同的光栅形状集成于倒装LED,虽然都实现了光提取效率的提高,不过光提取效率仍然不高,还有优化的空间。并且根据作者所在课题组可知,目前很少就不同光栅形状对光提取效率影响进行统一分析,为此本文中基于倒装LED研究了等腰梯形、等腰三角形、矩形光栅对LED光提取效率的影响。通过优化对比可知,等腰三角形光栅对提高LED光提取效率最为明显,最高可达77.75%,是无光栅结构正装LED的7倍,相比于其它文献报道有明显的提升。而等腰梯形光栅对光提取效率提高最少,最高仅能实现58.07%。这也表明在刻蚀矩形光栅时,一定要精准,以免刻蚀成梯形光栅降低光的提取效率。

    • 图 1展示了不同形状光栅在普通倒装LED上的集成情况。图 1a~图 1c均是在图 1d基础上集成的不同形状的光栅,光栅由金属Al刻蚀而成。图 1d中是普通的倒装LED,器件的中心波长为470nm,它由电极、P掺杂的GaN层(折射率nP-GaN=2.45,280nm)、有源区(multiple quantum wells,MQWs)InGaN/GaN (3nm)、N掺杂的GaN层(nN-GaN=2.42,3000nm)组成。p是光栅周期,h是光栅厚度,s是光栅条宽,光栅占空比f=s/pd是过渡层SiO2(nSiO2=1.45)的厚度。图 1b中等腰梯形的上边宽度s1是底边宽带s的一半,图 1c中的光栅是等腰三角形光栅。

      Figure 1.  a—rectangular grating flip-chip LED b—isosceles trapezoidal grating flip-chip LED c—isosceles triangle grating flip-chip LED d—normal flip-chip LED

      本文中选择倒装LED,是因为正装LED的正面电极会吸收一部分的出射光从而降低LED的发光效率,但是倒装LED却没有正面电极吸收出射光,而且背面电极在导通电流的同时还可以加厚作为背面反射镜,这可以提高LED光的光提取效率,另外由于有更多的光子逸出LED,则不会因为困在器件内作为损耗来降低LED的寿命[16]

    • 优化光栅参量和过渡层厚度,可以使集成的3种不同光栅的倒装LED都能实现高透射率。因为LED出光面透射率越高,理论上光提取效率越高[17]。为了使这3种不同结构的LED透射率达到最优,可通过严格耦合波法优化3种不同的倒装LED结构。

    • 当光栅周期p=110nm、光栅厚度h=110nm、过渡层厚度d=180nm时,3种不同结构的倒装LED随着占空比的增加,透射率均是先增大后减小,因此它们都存在一个最优的光栅占空比,如图 2所示。矩形光栅LED光栅最优占空比frectangle=0.35,等腰梯形光栅LED光栅最优占空比ftrapezium=0.45,等腰三角形光栅LED光栅最优占空比ftriangle=0.7。通过图 2可以发现, 虽然3种不同结构的LED存在不同最优占空比,但是它们在最优占空比下具有相同的最优透射率,最优透射率均是0.916。

      Figure 2.  The influence of grating duty cycle on transmissivity

    • 在3种不同形状光栅最优占空比下,分析了光栅周期对3种结构LED出光面的透射率的影响,随着光栅周期p的增加,3种不同结构LED出光面的透射率均是在周期250nm以内保持90%以上,不过当光栅周期大于250nm后, 3种不同结构LED的出光面透射率迅速下降,如图 3所示。其中光栅厚度为110nm,过渡层厚度为180nm。

      Figure 3.  The influence of grating period on transmissivity

      从图中可以发现,在最优占空比下3种结构的LED出光面透射率相差并不是很大,甚至矩形光栅LED和等腰三角形光栅LED出光面透射率几乎相同。对于矩形光栅LED和等腰三角形光栅LED最优光栅周期均是150nm,透射率均为0.9184,但是等腰梯形光栅LED最优光栅周期是175nm,透射率为0.919。

    • 光栅厚度对光栅透射率的影响机理是厚度的变化引起透射相位的变化,从而导致透射率的变化。光栅厚度对光栅透射率/反射率的影响是周期性的,即透射率随着光栅厚度的增加是先增后减周期性的变化。故将不同形状的光栅与倒装LED集成后,LED的出光面透射率随着光栅厚度变化也是周期性的,如图 4所示。3种光栅在最优占空比下,矩形和等腰三角形光栅LED的周期(prectangleptriangle)是150nm,等腰梯形光栅LED周期ptrapezium=175nm,过渡层厚度d=180nm。

      Figure 4.  The influence of grating thickness on transmissivity

      光栅厚度从10nm变化到200nm的过程中,3种不同结构LED出光面都是先递增后递减,3种结构的最优光栅厚度刚好相同都是80nm。与前面相同,矩形光栅LED和等腰三角形光栅LED出光面透射率随着光栅厚度变化刚好重叠,而对于等腰梯形光栅LED在光栅厚度100nm之内,其出光面透射率是小于前两种LED结构出光面透射率,但是当光栅厚度大于100nm后,则其出光面透射率大于前两种LED结构。

    • 之所以会在倒装LED和金属光栅之间添加一层SiO2过渡层,是因为金属铝和GaN层之间折射率相差较大,增加一层过渡层后可以作为缓冲。根据相关文献的介绍, 增加过渡层后不仅可以增加光的透射率, 还可以增加光的消光比。当3种不同结构LED的光栅占空比、周期、厚度均在最优状态下,3种结构LED出光面的透射率随着过渡层厚度的增加实现了类正弦型的变化,如图 5所示。

      Figure 5.  The influence of transition layer thickness on transmissivity

      图 3~图 5中可以发现,当矩形光栅LED和等腰三角形光栅LED的占空比选择在最优值后,它们的出光面透射率几乎都是一样的,因此这两种光栅形状在实现高透射率上并无区别。而等腰梯形光栅LED出光面透射率的变化随着过渡层厚度的变化均小于另外两种结构LED出光面透射率。但是3种结构的最优过渡层厚度都是190nm或者20nm,为了降低工艺的制作难度,可以选择厚度较厚的过渡层。

    • 通过对3种不同结构LED进行优化,使3种LED不同结构出光面的透射率均达到最大。矩形光栅倒装LED最优结构参量是:p=150nm;f=0.35;h=80nm;d=190nm。等腰三角形光栅倒装LED最优结构参量是:p=150nm;f=0.7;h=80nm;d=190nm。等腰梯形光栅倒装LED最优结构参量是:p=175nm;f=0.45;h=80nm;d=190nm。

      通过优化可以知道当矩形光栅LED和等腰三角形光栅LED在最优占空比下,无论其它光栅参量怎么变化,它们的出光面透射率基本相同,而等腰梯形光栅倒装LED出光面的透射率要略小于前面两种结构。图 6是3种最优LED对于不同波长时的光透射率变化趋势。从图可以知道, 随着波长的增加,透射率也在增加,而且矩形光栅LED和等腰三角形光栅LED不同波长透射率完全重合。在3种最优结构下,除了波长在0.4μm附近外,其它波段透射率均在0.80以上。

      Figure 6.  The influence of wavelength on transmissivity

      图 7是3种不同结构的LED在最优参量下,利用有限时域差分法计算对于不同波段时LED的光提取效率。由于等腰梯形光栅倒装LED的出光面透射率要比另外两种的要低,因此其光提取效率确实要低于另外两种结构的LED。从图中可以看到, 等腰梯形光栅LED光提取效率在波长为0.5μm时也就仅有58.07%。不过由前面可知, 矩形光栅LED出光面透射率和等腰三角形光栅LED出光面透射率几乎是相等的,但是从图中可以看到, 在相同波段下,矩形光栅LED光提取效率却低于等腰三角形LED光提取效率,这是由光栅形状所决定的。根据参考文献[16]可知,在入射角0°~90°内, 对于等腰三角形光栅无论光子是以什么角度进入,光子都能从光栅逃逸出去,但是矩形光栅却不能,当光子超过一定角度进入光栅,最终还是会回到LED器件内成为一种内损耗。因此当波长从0.4μm变化到0.5μm,等腰三角形光栅LED的光提取效率最低也可以达到71.54%,最高可达到77.75%,远大于参考文献[2]中的66%。

      Figure 7.  The influence of wavelength on extraction

    • 通过对不同结构LED(矩形光栅倒装LED、等腰三角形光栅倒装LED、等腰梯形光栅倒装LED)的优化,使3种结构LED的透射率均能达到最优。通过研究可得3种不同结构LED最优光栅参量和过渡层厚度分别是:f=0.35,p=150nm, h=80nm, d=190nm; f=0.45,p=175nm, h=80nm, d=190nm; f=0.7,p=150nm, h=80nm, d=190nm。在最优光栅参量和过渡层厚度下矩形倒装LED和等腰三角形倒装LED对于不同波长的透射率相等,而等腰梯形光栅倒装LED则要比另外两种LED要低。这也就导致了在相同波段下,等腰梯形光栅倒装LED的光提取效率要低于另外两种结构的LED。虽然矩形光栅倒装LED在相同波段下是和等腰三角形光栅倒装LED相等的,但是由于光栅结构的原因,矩形光栅倒装LED的光提取效率要比等腰三角形倒装LED低。等腰三角形光栅倒装LED最高的光提取效率接近80%,可达到77.75%, 相比于其它文献有明显的提高。

参考文献 (17)

目录

    /

    返回文章
    返回