高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种带宽展宽的等离子体超材料吸波体的设计

张浩 马宇 章海锋 杨靖 刘佳轩

引用本文:
Citation:

一种带宽展宽的等离子体超材料吸波体的设计

    作者简介: 张浩(1996-), 男, 大学本科生, 现主要从事超材料吸波器、电磁超材料的研究.
    通讯作者: 章海锋, hanlor@163.com
  • 基金项目:

    国家级大学生创新训练计划资助项目 SZDG2017009

  • 中图分类号: O436;O53

Design of a band enhanced absorber based on plasma metamaterial

    Corresponding author: ZHANG Haifeng, hanlor@163.com ;
  • CLC number: O436;O53

  • 摘要: 为了在TE波下获得带宽可展宽(11GHz~14GHz频带内)且可调谐的吸收曲线,提出了一种新型超材料吸波体,其周期性结构单元采用蜂窝状特有的六边形结构。对该吸波体的参量分析图进行了计算,研究了变量gd的数值不同时,对吸波体吸收频带及吸收带宽的影响,并解释了蚀刻"十"字形结构吸波体带宽展宽的成因。结果表明,该吸波体在9.17GHz~9.5GHz低频频域的吸收率达到90%以上,当不同的等离子体谐振区域被激励时,可以实现吸波体的分时分频域吸收以及改善吸波体的吸收性能,改变变量gd可以实现对吸收频带的动态调控;可以通过在方形结构中蚀刻"十"字形结构的方式拓宽高频频域的吸收带宽,其在12.08GHz~13.91GHz频域的吸收率高于90%,改变变量s可以明显展宽吸收频带,且该吸波体对入射电磁波的角度不敏感。该吸波体的设计思路为拓宽吸波体的吸收带宽提供了一种有效的方法。
  • Figure 1.  Schematic of the proposed absorber

    a—the designed plasma resonators (top layer) b—the side view c—periodic arrangement of the proposed absorber

    Figure 2.  Absorption curves of designed absorber

    a—absorption curve excited by Ω-shaped and square shaped resonators b—absorption curve excited by two U-shaped resonator c—absorption curve excited by all resonators

    Figure 3.  a—the distributions of electric field at 9.24GHz b—the distributions of surface current at 9.24GHz c—the distributions of electric field at 9.45GHz d—the distributions of surface current at 9.45GHz e—absorption curve of different dielectric substrates

    Figure 4.  a—absorption curves for g=0.5mm, 0.6mm, 0.7mm, 0.8mm b—the diagram of g vs.A c—absorption curves for d=6.8mm, 7mm, 7.2mm, 7.4mm d—the diagram of d vs. A

    Figure 5.  Schematic and absorption curve of the proposed band enhanced absorber

    a—schematic of plasma resonators (top layer) b—the side view c—the simulated absorption curve

    Figure 6.  a—the distributions of electric field at 12.32GHz b—the surface current of bottom metallic plate at 12.32GHz

    Figure 7.  a—absorption curves for s=1.3mm, 1.5mm, 1.7mm, 1.9mm b—the diagram of s vs. A

    Figure 8.  a—absorption curves for φ=0°, 10°, 20°, and 30° b—the diagram of φ vs. A

    Table 1.  The variables of the proposed absorber

    variable X B C d E F g H L M N O P Q R W
    value/mm 45 0.8 14.96 7 1.38 8.54 0.8 3.6 36 6.42 6.4 0.79 25.98 7.98 8.5 0.0138
    下载: 导出CSV
  • [1]

    HATAKEEYYAMA K, INUI T. Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers[J]. IEEE Transactions on Magnetics, 1984, 20(5):1261-1263. doi: 10.1109/TMAG.1984.1063424
    [2]

    LIMA U R, NASAR M C, NASAR R S, et al. Ni-Zn nanoferrite for radar-absorbing material[J]. Journal of Magnetism & Magnetic Materials, 2008, 320(10):1666-1670. 
    [3]

    MARIN P, CORTINAD, HERNANDO A. Electromagnetic wave absorbing material based on magnetic microwires[J]. IEEE Transactions on Magnetics, 2008, 44(11):3934-3937. doi: 10.1109/TMAG.2008.2002472
    [4]

    HODGKINSON I, WU Q H. Inorganic chiral optical materials[J]. Advanced Materials, 2001, 13(12/13):889-897. 
    [5]

    SIONCKE S, VERBIEST T, PERSOOONS A. Second-order nonlinear optical properties of chiral materials[J]. Materials Science and Engineering, 2003, R42(5/6):115-155.
    [6]

    SHIM J M, SHAN S C, KOŠMRLJ A, et al. Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials[J]. Soft Matter, 2013, 9(34):8198-8202. doi: 10.1039/c3sm51148k
    [7]

    WANG J F, QU Sh B, MA H, et al. Tunable planar left-handed metamaterials based on split-ring resonator pairs[C]//IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications. New York, USA: IEEE, 2015: 1-3.
    [8]

    ZHOU H, WANG C, PENG H. A novel double-incidence and multi-band left-handed metamaterials composed of double Z-shaped structure[J]. Journal of Materials Science Materials in Electronics, 2016, 27(3):2534-2544. doi: 10.1007/s10854-015-4056-2
    [9]

    LIU S H, GUO L X, LI J Ch. Left-handed metamaterials based on only modified circular electric resonators[J]. Journal of Modern Optics, 2016, 63(21):2220-2225. doi: 10.1080/09500340.2016.1189008
    [10]

    RYBIN O, SHULGA S. Profile miniaturization and performance improvement of a rectangular patch antenna using magnetic metamaterial substrates[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2016, 26(3):254-261. doi: 10.1002/mmce.v26.3
    [11]

    ZHANG Y, TANG H, YAO Ch, et al. Experiments on adjustable magnetic metamaterials applied in megahertz wireless power transmission[J]. AIP Advances, 2015, 5(1):2075-2084.
    [12]

    KIRIUSHECHKINA S V, KOTEI'NIKOVA O A, RADKOVSKAYA A A. Peculiarities of propagation of electroinductive waves in magnetic metamaterials[J]. Physics of Wave Phenomena, 2017, 25(2):101-106. doi: 10.3103/S1541308X17020042
    [13]

    TARKHANAYAN R H. Effective permittivity and permeability of magnetic metamaterials with periodic array of 2-D electronic layers in quantum hall effect conditions[J]. Journal of Electromagnetic Waves & Applications, 2008, 22(7):1005-1012.
    [14]

    WANG R L, WANG J F, LI Y F, et al. Dual-band suspended stripline filter based on electric metamaterials[J]. Microwave & Optical Technology Letters, 2017, 59(9):2297-2302. 
    [15]

    WEI Y Sh, SU AN, XU J Y, et al. Characteristics of dual-channel optical filter in quaternary heterostructure photonic crystal [J]. Laser Technology, 2018, 42(2): 212-212(in Chinese). 
    [16]

    ZHANG X D, CHEN N, NIE F K, et al. Dispersion characteristics analysis of photonic crystal fibers based on structure parameters and filling modes [J]. Laser Technology, 2018, 42(1):48-52 (in Chinese).
    [17]

    LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [18]

    ZHANG H, ZHANG H F, YANG J, et al. Design of an absorber based on plasma metamaterial[J]. Laser Technology, 2018, 42(5): 704-708(in Chinese).
    [19]

    WU D, LIU Y, LI R, et al. Infrared perfect ultra-narrow band absorber as plasmonic sensor [J]. Nanoscale Research Letters, 2016, 11(1):483-491. doi: 10.1186/s11671-016-1705-1
    [20]

    WANG B X, WANG L L, WANG G Z, et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2014, 26(2): 111-114. doi: 10.1109/LPT.2013.2289299
    [21]

    LI L, WANG J, DU H, et al. A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators[J]. AIP Advances, 2015, 5(1): 017147. doi: 10.1063/1.4907050
    [22]

    DING F, CUI Y, GE X, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10):103506. doi: 10.1063/1.3692178
    [23]

    CHENG Y Zh, WANG Y, NIE Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements[J]. Journal of Applied Physics, 2012, 111(4): 044902. doi: 10.1063/1.3684553
    [24]

    KONG X K, LI H M, BIAN B R, et al. Microwave tunneling in heterostructures with electromagnetically induced transparency-like metamaterials based on solid state plasma[J]. The European Physical Journal Applied Physics, 2016, 74(3): 30801. doi: 10.1051/epjap/2016150452
    [25]

    KONG X K, MO J J, YU Zh Y, et al. Reconfigurable designs for electromagnetically induced transparency in solid state plasma metamaterials with multiple transmission windows[J]. International Journal of Modern Physics, 2016, B30(14): 1650070. 
    [26]

    BALANIS C A. Antenna theory: analysis and design[M].Hoboken, New Jersey, USA:John Wiley & Sons, 1982:989-990.
  • [1] 李从午卞立安 . 基于F-P谐振与SPP共振的石墨烯双模吸波体设计. 激光技术, 2021, 45(4): 507-510. doi: 10.7510/jgjs.issn.1001-3806.2021.04.015
    [2] 陈雨微卞立安刘培国王建范崇祎 . 基于多层F-P谐振腔的石墨烯吸波体设计. 激光技术, 2023, 47(3): 317-321. doi: 10.7510/jgjs.issn.1001-3806.2023.03.005
    [3] 夏源谢卉孙莉萍胡强高 . 超窄带宽可调光滤波器的研究. 激光技术, 2013, 37(4): 493-497. doi: 10.7510/jgjs.issn.1001-3806.2013.04.017
    [4] 胡晨曦王吉明吴彤赫崇君顾晓蓉刘友文 . 基于超表面的宽波带光束聚焦研究. 激光技术, 2018, 42(5): 681-686. doi: 10.7510/jgjs.issn.1001-3806.2018.05.018
    [5] 邵珺叶景峰胡志云张振荣 . 基于光学元件结构优化的仿真平台设计与实现. 激光技术, 2011, 35(4): 511-513,517. doi: 10.3969/j.issn.1001-3806.2011.04.017
    [6] 王鹏飞贺风艳刘建军井绪峰洪治 . 基于连续谱束缚态的高Q太赫兹全介质超表面. 激光技术, 2022, 46(5): 630-635. doi: 10.7510/jgjs.issn.1001-3806.2022.05.008
    [7] 张剑李国华 . 波片延迟误差校正的理论与技术. 激光技术, 2006, 30(3): 274-276.
    [8] 孔庆典宋连科孔丽华 . 石英波片延迟量的温度效应研究. 激光技术, 2008, 32(4): 374-376.
    [9] 栗开婷吴福全刘前彭敦云李丁丁 . 三元波片复合退偏器退偏性能的穆勒矩阵分析. 激光技术, 2015, 39(4): 549-551. doi: 10.7510/jgjs.issn.1001-3806.2015.04.027
    [10] 任树锋王秀霞 . 线偏振光通过多个任意厚度波片的偏振态. 激光技术, 2014, 38(3): 394-397. doi: 10.7510/jgjs.issn.1001-3806.2014.03.024
    [11] 宋师霞宋连科 . 二元复合波片退偏器的研究. 激光技术, 2009, 33(6): 654-656. doi: 10.3969/j.issn.1001-3806.2009.06.027
    [12] 贾朋李国华彭捍东孔超 . 三元复合式消色差λ/4波片使用范围的再研究. 激光技术, 2008, 32(1): 47-49.
    [13] 张玉娇高少华宋筱禹宣伊王佳艺张心正 . 大孔径液晶q波片的制备及性能研究. 激光技术, 2019, 43(4): 442-447. doi: 10.7510/jgjs.issn.1001-3806.2019.04.002
    [14] 韩晓晓童元伟 . 基于π型结构双折射超表面的设计与应用. 激光技术, 2020, 44(1): 42-49. doi: 10.7510/jgjs.issn.1001-3806.2020.01.008
    [15] 苑秋红谢康韩艳芬 . 含负折射率材料的1维光子晶体掺杂缺陷模研究. 激光技术, 2010, 34(2): 232-235. doi: 10.3969/j.issn.1001-3806.2010.02.024
    [16] 李茜李海涛张银蒲申彦春 . 基于线性光放大器全光逻辑或非门的仿真研究. 激光技术, 2012, 36(6): 825-827. doi: 10.3969/j.issn.1001-3806.2012.06.028
    [17] 何晓红阮于华 . 一种面向大规模光学器件生产的数据采集系统. 激光技术, 2015, 39(1): 57-60. doi: 10.7510/jgjs.issn.1001-3806.2015.01.011
    [18] 张杰李健周南闫骥 . 太赫兹衰减全内反射油品检测系统中的棱镜设计. 激光技术, 2017, 41(4): 549-553. doi: 10.7510/jgjs.issn.1001-3806.2017.04.018
    [19] 朱能伟方晓东梁勖赵读亮 . 准分子激光器中张氏面型电极的电场仿真研究. 激光技术, 2017, 41(5): 680-683. doi: 10.7510/jgjs.issn.1001-3806.2017.05.012
    [20] 彭玉峰吴定允张毅程祖海 . 高功率激光反射镜热畸变补偿结构设计与仿真. 激光技术, 2012, 36(1): 120-123. doi: 10.3969/j.issn.1001-3806.2012.01.031
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  4910
  • HTML全文浏览量:  2919
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-17
  • 录用日期:  2018-06-29
  • 刊出日期:  2019-03-25

一种带宽展宽的等离子体超材料吸波体的设计

    通讯作者: 章海锋, hanlor@163.com
    作者简介: 张浩(1996-), 男, 大学本科生, 现主要从事超材料吸波器、电磁超材料的研究
  • 1. 南京邮电大学 电子与光学工程、微电子学院, 南京 210023
  • 2. 南京邮电大学 电子科学与技术国家级实验教学示范中心, 南京 210023
  • 3. 南京邮电大学 信息电子技术国家级虚拟仿真实验教学中心, 南京 210023
基金项目:  国家级大学生创新训练计划资助项目 SZDG2017009

摘要: 为了在TE波下获得带宽可展宽(11GHz~14GHz频带内)且可调谐的吸收曲线,提出了一种新型超材料吸波体,其周期性结构单元采用蜂窝状特有的六边形结构。对该吸波体的参量分析图进行了计算,研究了变量gd的数值不同时,对吸波体吸收频带及吸收带宽的影响,并解释了蚀刻"十"字形结构吸波体带宽展宽的成因。结果表明,该吸波体在9.17GHz~9.5GHz低频频域的吸收率达到90%以上,当不同的等离子体谐振区域被激励时,可以实现吸波体的分时分频域吸收以及改善吸波体的吸收性能,改变变量gd可以实现对吸收频带的动态调控;可以通过在方形结构中蚀刻"十"字形结构的方式拓宽高频频域的吸收带宽,其在12.08GHz~13.91GHz频域的吸收率高于90%,改变变量s可以明显展宽吸收频带,且该吸波体对入射电磁波的角度不敏感。该吸波体的设计思路为拓宽吸波体的吸收带宽提供了一种有效的方法。

English Abstract

    • 吸波材料由于呈现低反射率的特性,可以有效地损耗进入其内部的电磁波,使得其在电磁防护与电磁屏蔽方面有着广阔的应用前景,常见的吸波材料有铁氧体吸波材料[1-2]、磁性吸波材料[3]、手性材料[4-6]等。电磁超材料通常被定义为一种人造介质,具有自然界存在物质所不具备的不同寻常的特性,它们由周期性亚波长金属元素阵列组成。近年来,有关电磁超材料的研究引起了相当的关注,并开创了一个新的科学研究领域,而电磁超材料的许多外来电磁特性已经在许多应用领域得到了证明和应用,目前广泛研究的超材料主要包括左手材料[7-9]、磁超材料[10-12],电超材料[13-14]、光子晶体[15-16]等。

      美国学者LANDY等人[17]在2008年提出了一种开口谐振环结构的3层电磁超材料吸波体,并在THz频带设计出了一种超材料完美吸波体,而电磁超材料吸波体作为一种新型的吸波材料逐渐被学者们所熟知并被广泛应用于军事、民用领域。对于吸波体的实际应用,吸收带宽往往是重要的性能指标之一,而早期所设计的吸收体的窄吸收带宽[18-19]大大限制了它们在许多工业和军事领域的实际应用,随着吸波体应用领域研究的深入,目前,已经提出了多种技术解决吸波体吸收带宽较窄的问题。WANG等人[20]通过在设计的吸波体中采用正方形板和电介质交替堆叠的方式,使得吸波体由单频点的吸收实现了带宽为300GHz的宽带吸收。LI等人[21]通过多个谐振结构组合的方式设计了一种带宽展宽的吸波体,其结构单元中采用4个高介电常数的“E”形谐振单元,其在两种极化状态下吸收带宽均达到1GHz。DING等人[22]设计了一种多层金属介质四角锥台形吸波体,通过采用多个平行于金属表面的吸收层在7.8GHz~14.7GHz频率范围内实现了宽带吸收(吸收率A的值高于90%)。CHENG等人[23]提出一种基于集总电阻的分裂的硬币型超材料吸波体,当吸波体未加载电阻时,仅有两个较高的吸收频点,通过加载集总电阻,该吸波体在3.1GHz~5.6GHz频率范围内实现了吸收率高于90%的宽带吸收。然而,传统的带宽可展宽的超材料吸波体很难实现吸收曲线的动态调控,即吸波体分时分频域的吸收特性。

      等离子体超材料(plasma metamaterial,PM)作为一种新型的超材料,由于等离子体本身的优良特性[24-25],逐渐走进人们的视野,等离子体的介电常数可以用$ {\varepsilon _{\rm{p}}}(\omega ) = 1 - \frac{{\omega _{\rm{p}}^2}}{{{\omega ^2} + j\omega {\omega _{\rm{c}}}}}$来描述(其中ω是入射波频率),人们可以通过改变等离子体频率ωp和碰撞频率ωc的大小,设计出工作频率可调控的吸波体。本文中采用的固态等离子体为GaAs,如参考文献[24]和参考文献[25]中所述。本文中利用PM设计出一种带宽可拓宽的新型超材料吸波体,其中等离子频率ωp=2.85×1014rad/s,碰撞频率ωc=1.6×1013s(等离子体参量取值参照参考文献[24]和参考文献[25]),结构上采用蜂窝状特有的六边形结构,并通过对等离子体谐振结构(plasma resonator, PR)激励区域的调控,即等离子体被激励时,磁导率较高,其特性接近于金属,等离子体未被激励时表现与介质类似的特性[26],从而实现吸波体的分时分频域吸收。

    • 图 1是PM吸波体的单元结构示意图。图 1a是PR的示意图,图 1b是侧视图,图 1c是周期结构单元示意图。从图中可以看出,PM吸波体的底层采用电导率σ=5.8×107s/m的金属铜板,介质基板位于PR和反射板之间,上层由一个“Ω”形PR、一个方形PR和两个“U”形PR构成。介质基板则采用相对介电常数εr=4.3的FR-4,其损耗角正切为0.025,介质基板的边长L=36mm,宽P=25.98mm,厚度H=3.6mm,上层PR的厚度W=0.0138mm,“Ω”形PR是由三角形的边和直径C=6.7mm、宽度B=0.8mm的半圆环经过组合设计而成,“Ω”形PR的宽X=45mm,“Ω”形PR的结构线宽E=1.38mm,方形PR的长R=8.5mm,宽F=8.54mm,两个“U”形PR的长N分别是6.4mm和13.734mm (1.962d,其中d=7mm),宽分别为M=6.42mm和Q=7.98mm,两个PR的间距g=0.8mm,两个“U”形PR的宽度均为O=0.79mm,PM吸波体中的其它相关变量如表 1所示。电磁波波矢垂直于吸收平面,电场和磁场方向如图 1a所示,电场Ey轴平行,磁场Hx轴平行,由于本文中设计的吸波体为反射型吸波体,所以吸收率A(ω)=1-R(ω), 其中R(ω)是反射率。

      Figure 1.  Schematic of the proposed absorber

      Table 1.  The variables of the proposed absorber

      variable X B C d E F g H L M N O P Q R W
      value/mm 45 0.8 14.96 7 1.38 8.54 0.8 3.6 36 6.42 6.4 0.79 25.98 7.98 8.5 0.0138
    • 图 2是不同PR被激励时的吸收曲线。图 2a是只有“Ω”形PR和方形PR被激励时(等离子体激励状态1)的吸收曲线,从图 2a中可以看出,吸收曲线中位于9.34GHz和10.76GHz处有两个吸收频点,其A值分别为87.34%和97.02%。图 2b是两个“U”形PR被激励、“Ω”形PR和方形PR不被激励时(等离子体激励状态2)的吸收曲线,从图 2b中可以看出,吸收曲线中有两个吸收峰值,其A值分别为97.36%和97.8%,分别位于9.43GHz和11.17GHz。对比图 2a图 2b中的吸收曲线,结构单元中所激励的PR不同,其吸收频点的位置和吸收峰的强度均发生了变化。图 2c是所有PR被激励时(等离子体激励状态3)的吸收曲线,从图 2c中可以看出,该吸波体在频带9.17GHz~9.5GHz内, A值高于90%,且在9.24GHz和9.45GHz处有两个吸收峰值较高的吸收频点,其A值分别为98.81%和94.01%。由图 2c对比图 2a图 2b可知,当“Ω”形PR、方形PR和两个“U”形PR同时被激励时,PM吸波体的吸收性能显著改善,同时吸收带宽进一步拓宽。所以,可以通过人为地调控PR的激励状态,实现对吸波体吸收频域的动态调控,即实现吸波体分时分频域的吸收,以及改善PM吸波体的吸收性能。

      Figure 2.  Absorption curves of designed absorber

      图 3是PM吸波体在频率点F1=9.24GHz和F2=9.45GHz处、介质基板厚度为3.59mm横截面的电场分布图和背面反射板的电流分布图(图中只标注了该吸波体周期结构单元的电场和表面电流的主要集中区域)。由图 3a图 3c可知,当电磁波垂直入射且频率分别为F1=9.24GHz和F2=9.45GHz时,其电场主要分布于PR底部的介质基板中(如图中a1a2b1b2b3所示),显然,该吸波体的工作机理是通过介质谐振,入射的电磁波通过介质表面的PR,使得电磁波的能量在介质基板中被损耗。同时,图 3e中给出了介质基板为有损耗和无损耗的吸收曲线,从图中可以看出,当介质基板无损耗时(见图 3e中虚线),位于9.24GHz和9.45GHz处的频点A值仅为58.54%和84.02%,显然,其是通过介质基板使得入射电磁波的能量在介质基板中得以损耗,这与电场图的分析结果相对应。由图 3b可以看出,底面金属反射板上的电流都向方形谐振单元的中心汇聚(如图中圆圈区域所示),此时可以等效为方形PR中间存在着一个负电荷,而从图 3a可以看出,电场主要集中方形PR的边缘和“U”形PR的底部(如图中a1a2所示),此时可以等效为介质上表面存在一个正电荷,因此,该PM吸波体的上表面PR和底面的反射板可以等效成一个电偶极子,在上表面和底面之间形成磁谐振,将入射电磁波的能量损耗于介质基板中,同理,频率点F2=9.45GHz处的吸收机理和频率点F1=9.24GHz处吸收机理相同。

      Figure 3.  a—the distributions of electric field at 9.24GHz b—the distributions of surface current at 9.24GHz c—the distributions of electric field at 9.45GHz d—the distributions of surface current at 9.45GHz e—absorption curve of different dielectric substrates

      图 4中给出了不同变量对该吸波体性能的影响。图 4a是变量g(两个“U”形PR的上下间距)的值为0.5mm, 0.6mm, 0.7mm和0.8mm时的吸收曲线(其它参量不变),当g=0.5mm时,吸收曲线中有两个A值较高的频率点,分别位于F1=9.21GHz和F2=9.47GHz,A值分别为95.63%和91.6%;位于频率点F0=9.35GHz处, A=82.75%,随着g的增大,该吸波体各频率点A值逐渐增大,当g=0.8mm时,吸波体的吸收性能最佳,其在9.17GHz~9.5GHz吸收频带内, A值高于90%。图 4bAg的关系图,从图中可以看出,该吸波体在9GHz~10GHz内的吸收频带随着g的增大逐渐减小,吸收频带的上边缘随着g的增大发生略微的红移(即频率点F1处的吸收峰值向低频移动),吸收频带的下边缘随着g的增大发生略微的蓝移(即频率点F2处的吸收峰值向高频移动),而频率点F0A值随着g的增大逐渐增大,当g=0.8mm时,频率点F0处的A值达到90%以上,此时该吸波体的工作带宽最宽。同时,随着g的增大,位于12GHz附近的吸收频域逐渐向高频移动,且A值达到90%以上。显然,变量g对于该吸波体吸收频带的调谐起重要作用。图 4c是变量d的值分别为6.8mm, 7mm, 7.2mm, 7.4mm时的吸收曲线,当d=6.8mm时,该吸波体位于9.23GHz有一个A值较高的频点,其吸收峰值为98.59%;当d=7mm,该吸波体A值高于90%的吸收频带为9.17GHz~9.5GHz,且有两个较高的吸收频点,分别位于F1=9.24GHz和F2=9.45GHz处,A值分别为98.81%和94.01%。随着d的增大,该吸波体的吸收曲线发生明显的红移。图 4dAd的关系图,从图中可以看出,该吸波体在9GHz~10GHz的吸收频带随着变量d的增大先逐渐增大再逐渐减小,且该频段的吸收频带发生明显的红移。d=7mm时,该吸波体的工作带宽最宽,同时,随着d的增大,9GHz~10GHz吸收频带的下边缘发生波动(即频率点F1的吸收峰值先发生红移后发生蓝移再发生红移),其吸收频带的上边缘发生明显的红移(即频率点F2随着d的增大,逐渐向低频移动,当d=7.4mm时,频率点F2消失),显然,变量d是影响该吸波体吸收带宽的重要变量。所以,可以通过人为地改变PR的激励区域(如改变变量gd的值)实现对吸收曲线的动态调控,并且展宽该吸波体的吸收带宽。

      Figure 4.  a—absorption curves for g=0.5mm, 0.6mm, 0.7mm, 0.8mm b—the diagram of g vs.A c—absorption curves for d=6.8mm, 7mm, 7.2mm, 7.4mm d—the diagram of d vs. A

      为了展宽该吸波体的吸收带宽,图 5中给出了进一步设计的吸波体结构示意图以及相应的吸收曲线。图 5a是PR的示意图, 图 5b是侧视图。从图 5a中可以看出,方形PR中截去了间距s=1.7mm的“十”字形结构,内部的“U”形PR的线宽V=0.7mm,宽U=5.82mm,其相应的吸收曲线如图 5c所示。对比图 2c可以看出,低频工作频域的吸收性能有所下降,在9.18GHz~9.53GHz吸收频带范围内,A值达到84%以上,而该吸波体高频吸收频带范围内的吸收带宽明显拓宽,在12.08GHz~13.91GHz吸收频带范围内,A值高于90%,在11.95GHz~14GHz吸收频带范围内,A值达到84%以上。

      Figure 5.  Schematic and absorption curve of the proposed band enhanced absorber

      图 6中给出了带宽展宽的吸波体在频率点F3=12.32GHz处、介质基板厚度为3.59mm时横截面的电场分布图和背面反射板的电流分布图。由图 6a对比图 3a图 3c可知,“十”字形结构处的电场分布明显增强(如图 6a中圆圈区域所示); 由图 6b对比图 3b图 3d可知,金属板上的电流方向改变,沿y轴正方向流动(如图 6b中箭头所示),显然,从图 6a图 6b中可以看出,通过在方形结构中蚀刻“十”字形结构,使得该吸波体的磁谐振损耗明显增强,所以吸波体在11GHz~14GHz频带内的吸收带宽明显展宽。

      Figure 6.  a—the distributions of electric field at 12.32GHz b—the surface current of bottom metallic plate at 12.32GHz

      为了说明“十”字形结构线宽(变量s)对吸波体吸收频域的影响,图 7a中给出了变量s的值为1.3mm, 1.5mm, 1.7mm, 1.9mm的吸收曲线(其它参量不变)。当s=1.3mm时,该吸波体吸收频带为12.49GHz~13.61GHz(A值高于90%),吸收曲线中位于12.69GHz和13.39GHz处有两个A值较高的频率点,A值分别为97.33%和99.97%,位于频率点F3=12.98GHz处, A值为92.51%,随着s的增大,频率点F3处的A值逐渐降低,该频率点A值在s=1.7mm时降低至90%,当s=1.7mm时,吸波体的吸收性能最佳,其A值达到90%以上的吸收频带为12.08GHz~13.91GHz,其位于12.31GHz, 13.26GHz和13.65GHz处有3个吸收频率点,A值分别为99.95%, 99.87%和99.47%,同时,随着s的增大,该吸波体的吸收频带和吸收带宽均发生变化。图 7bAs的关系图,从图中可以看出,在低频工作范围内(9.17GHz~9.53GHz),随着s的增大,吸收曲线中的工作频域近乎一条直线,说明该吸波体A值保持不变,在高频工作范围内(11GHz~14GHz),随着s的增大,该吸波体的工作频域先增大后减小(s=1.7mm时,吸收带宽最宽,为1.83GHz),同时11GHz~14GHz的吸收频带随着s的增大,逐渐向高频移动。显然,优化变量s的值可以拓宽该吸波体的吸收带宽。

      Figure 7.  a—absorption curves for s=1.3mm, 1.5mm, 1.7mm, 1.9mm b—the diagram of s vs. A

      电磁波大角度入射稳定一直以来都是设计吸波体所关注的一个重要性能,图 8是入射角φ(波数ky-O-z面的夹角)变化的吸收曲线。图 8a是入射角从0°增加到30°的吸收曲线,从图中可以看出,在11.92GHz~13.89GHz吸收频带范围内,该吸波体A值(高于80%)在相对较大的入射角内保持稳定(0°~20°),当入射角φ=30°时,A值高于80%的吸收频带为12.58GHz~13.89GHz(11.92GHz~13.89GHz频带范围内)。图 8bφA的关系图(0°~80°),从图中可以看出,随着入射角逐渐增大,该吸波体的吸收带宽逐渐减少,当入射角增大到60°时,该吸波体在12.91GHz~13.93GHz频带范围内,A值达到76%,由此可知,该吸波体对入射电磁波的角度不敏感。

      Figure 8.  a—absorption curves for φ=0°, 10°, 20°, and 30° b—the diagram of φ vs. A

    • 提出了一种带宽可展宽(11GHz~14GHz频域内)的PM吸波体,其结构单元采用蜂窝型特有的六边形结构,对该吸波体的参量分析图进行了计算,探讨了变量gd数值不同时对吸收性能的影响,计算可得:不同的PR被激励时,该吸波体的吸收性能改善,同时能实现吸波体在TE波的分时分频域吸收。PM吸波体的吸收频带位于9.17GHz~9.5GHz,该吸波体是通过介质谐振和磁谐振将入射的电磁波能量损耗于介质基板中。改变gd的数值能够实现对吸收曲线的动态调控。该吸波体各频率点处的A值随着变量g的增大逐渐增大,而在9GHz~10GHz内的吸收频带逐渐减小。随着变量d的增大,该吸波体的吸收曲线发生明显的红移,在9GHz~10GHz的吸收频带随着d的增大先增大后减小。所以,可以通过人为地调控PR的激励区域实现对吸收曲线的动态调控,为了拓宽吸波体的吸收带宽,通过在原有结构的基础上蚀刻“十”字形结构,使得吸波体在11GHz~14GHz频带内的吸收带宽明显展宽,解释了蚀刻“十”字形结构吸波体带宽展宽的成因,并进一步探讨了变量s和入射角度(对吸收带宽和吸收频带的影响,计算可得:随着s的增大,该吸波体的吸收频带发生明显的蓝移,吸收带宽进一步展宽,而且该吸波体对入射电磁波的角度不敏感。

参考文献 (26)

目录

    /

    返回文章
    返回