高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdTe太阳电池激光诱导微区光谱响应研究

郑雨洁 周彪 杨秀涛 张静全 王文武 张王志 张洪国 曾广根

引用本文:
Citation:

CdTe太阳电池激光诱导微区光谱响应研究

    作者简介: 郑雨洁(1997-), 女, 硕士研究生, 主要从事太阳电池材料与器件方面的研究.
    通讯作者: 曾广根, zengggscu@163.com
  • 基金项目:

    四川省重点研发计划资助项目 22ZDYF2705

    校企合作项目 21H1155

    四川省科技成果转移转化示范项目 2021ZHCG0004

    四川大学-达州市人民政府战略合作项目 2020CDDZ-04

    四川大学实验技术立项项目 Scu202007

  • 中图分类号: TN249;O433.5+3

Research on laser-induced local spectral response of CdTe solar cell

    Corresponding author: ZENG Guanggen, zengggscu@163.com
  • CLC number: TN249;O433.5+3

  • 摘要: 为了反映器件几何尺度上各个区域的性能分布, 采用波长为852 nm且可调聚焦面积的激光束作用在CdTe薄膜太阳电池的P-N结微区表面, 产生定域诱导光致电流响应, 并通过设置样品台的步进方式, 得到了所测器件在几何面积范围内的微区光谱响应分布图, 获得更直观的器件电流分布均匀性和P-N结特性。结果表明, 这种测试方式能够简化且低成本地建立与CdS/CdTe异质结制作技术密切相关的沉积与后处理工艺参数和材料特性的联系, 进而获得异质结界面分布均匀性与太阳电池电流-电压(I-V)特性参数均匀性的对应关系。该研究可为提高太阳电池的性能提供实验测试依据。
  • 图 1  a, b—实验设计c, d—器件结构e—电池等效电路图

    Figure 1.  a, b—experimental design c, d—device structure e—equivalent circuit diagram

    图 2  不同效率的太阳电池光I-V特性及全面积QE特性

    Figure 2.  I-V characteristics and full-area QE characteristics of solar cells with different efficiencies

    图 3  电池微区光谱响应

    Figure 3.  Local spectral response of solar cells

    图 4  样品微区激光诱导电流分布情况

    Figure 4.  Laser-induced current distribution of different samples

    表 1  电池性能参数

    Table 1.  Battery performance parameters

    No. VOC/mV JSC/(mA·cm-2) FF/% efficiency/% Rs/(Ω·cm2) Rsh/(Ω·cm2)
    1 751.6 23.98 69.06 12.45 5 1173
    2 771.5 24.20 67.12 12.53 6 1134
    3 741.8 23.23 62.78 10.82 8 614
    4 694.1 7.34 52.22 5.31 26 447
    下载: 导出CSV
  • [1]

    BLISS M, SMITH A, BETTS T R, et al. Spectral response measurements of perovskite solar cells[J]. IEEE Journal of Photovoltaics, 2019, 9(1): 220-226. doi: 10.1109/JPHOTOV.2018.2878003
    [2]

    MUDGAL S, SINGH S, KOMARALA V K, et al. Investigation of electrical parameters of amorphous-crystalline silicon heterojunction solar cells: Correlations between carrier dynamics and S-shape of current density-voltage curve[J]. IEEE Journal of Photovoltaics, 2018, 8(4): 909-915. doi: 10.1109/JPHOTOV.2018.2821839
    [3] 王少熙, 杜幸芝, 樊晓桠. 不同光谱响应太阳能电池测试差异性研究[J]. 电子元件与材料, 2018, 37(2): 30-34.

    WANG Sh X, DU X Zh, FAN X Y. Study of difference when testing solar cell having different spectral response[J]. Electronic Components and Materials, 2018, 37(2): 30-34(in Chinese). 
    [4]

    DALAL V, LEONARD M, BOOKER J, et al. Quantum efficiency of amorphous alloy solar cells[C]// Conference Record of the Eighteenth IEEE Photovoltaic Specialists Conference. New York, USA: IEEE, 1985: 37-41.
    [5]

    NAKAMOTO T, MAKITA K, TAYAGAKI T, et al. Spectral response measurements of each subcell in monolithic triple-junction GaAs photovoltaic devices[J]. Applied Physics Express, 2019, 12(10): 102015. doi: 10.7567/1882-0786/ab45d8
    [6]

    JONES E W, HOLLIMAN P J, PETER L M. Spectral response map-ping of co-sensitized dye-sensitized solar cells dyed processed using rapid adsorption/desorption[J]. Materials Letters, 2019, X3: 100015.
    [7]

    AHANGHARNEJHAD R H, SONG Z, DEWITT J L, et al. Decreasing the resolution limit of laser beam induced current measurements below the beam size without confocal optics: Determining laser scribe widths[J]. Solar Energy Materials and Solar Cells, 2020, 215(1): 110660.
    [8]

    HUANG J, YANG D, LI W, et al. Copassivation of polycrystalline CdTe absorber by CuCl thin films for CdTe solar cells[J]. Applied Surface Science, 2019, 484: 1214-1222. doi: 10.1016/j.apsusc.2019.03.253
    [9]

    WALLMARK J T. A new semiconductor photocell using lateralphotoeffect[J]. Proceedings of the IRE, 1957, 45(4): 474-483. doi: 10.1109/JRPROC.1957.278435
    [10]

    MUSCA C A, REDFERN D A, DEELL J M, et al. Laser beam induced current as a tool for HgCdTe photo-diode characterisation[J]. Microelectronics Journal, 2000, 31: 334-343.
    [11] 谭宇, 陆健. 连续激光辐照三结GaAs太阳电池热应力场研究[J]. 激光技术, 2020, 44(2): 250-254.

    TAN Y, LU J. Study on thermal stress field of three junction GaAs solar cells irradiated by continuous laser[J]. Laser Technology, 2020, 44(2): 250-254(in Chinese). 
    [12]

    FENG L H, WU L L, LI X X, et al. Analysis of build-in electrostatic field in CdTe thin film solar cells by Qe measurements at bias voltages, 32nd european photovoltaic solar energy conference and exhibition[C]//WIP Renewable Energies. Munich, German: WIP Economy and Infrastructure GmbH & Co Planungs-KG, 2016: 1241-1243.
    [13]

    ARAUJO G L, SANCHEZ E, MARTI M. Determination of the two-exponential solar cell equation parameters from empirical data[J]. Solar Cells, 1982, 5(2): 199-204. doi: 10.1016/0379-6787(82)90027-8
    [14]

    CARSTENSEN J, POPKIROV G, BAHR J, et al. CELLO: An advanced LBIC measurement technique for solar cell local characteriza-tion[J]. Solar Energy Materials and Solar Cells, 2003, 76(4): 599-611. doi: 10.1016/S0927-0248(02)00270-2
    [15]

    WANG W, XIA G, ZHENG J, et al. Study of polycrystalline ZnTe (ZnTe∶Cu) thin films for photovoltaic cells[J]. Journal of Materials Science Materials in Electronics, 2007, 18(4): 427-431. doi: 10.1007/s10854-006-9044-0
    [16]

    ZENG G G, ZHANG J Q, WAN W W, et al. Correlation of interfacial transportation properties of CdS/CdTe heterojunction and performance of CdTe polycrystalline thin-film solar cells[J]. International Journal of Photoenergy, 2015, 9: 1-8.
    [17]

    GREEN M, DUNLOP E, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 58)[J]. Progress in Photovoltaics: Research and Applications, 2021, 6: 1-11.
    [18]

    ZENG G G, PAUL H, ALI K, et al. Correlation of microscopic grain evolution in post-CdCl2 annealing and performance of CdS/CdTe thin film solar cells fabricated using pulsed laser deposition[J]. Physica Status Solidi, 2016, A213(12): 3231-3237.
  • [1] 刘玉丽申健孙燕明李睿 . 激光诱导微纳米物质在1维载体上的输运. 激光技术, 2023, 47(1): 140-146. doi: 10.7510/jgjs.issn.1001-3806.2023.01.022
    [2] 钱祥忠 . 激光诱导向列相液晶分子重新取向的研究. 激光技术, 2001, 25(4): 268-271.
    [3] 陈存华刘建国郑家燊周崎 . CO2激光液相诱导沉积金属层附着力的研究. 激光技术, 2004, 28(1): 26-28,35.
    [4] 杨欢陆健周大勇贾魏李广济周广龙张宏超 . 1070nm连续激光辐照三结GaAs太阳电池的实验研究. 激光技术, 2017, 41(3): 318-321. doi: 10.7510/jgjs.issn.1001-3806.2017.03.003
    [5] 孙浩徐建明张宏超杨欢陆健 . 连续激光辐照三结GaAs太阳电池温度场仿真. 激光技术, 2018, 42(2): 239-244. doi: 10.7510/jgjs.issn.1001-3806.2018.02.019
    [6] 谭宇陆健 . 连续激光辐照三结GaAs太阳电池热应力场研究. 激光技术, 2020, 44(2): 250-254. doi: 10.7510/jgjs.issn.1001-3806.2020.02.020
    [7] 王绍龙王阳恩陈奇陈善俊 . 激光诱导击穿光谱技术定量分析原油金属元素. 激光技术, 2015, 39(1): 104-108. doi: 10.7510/jgjs.issn.1001-3806.2015.01.021
    [8] 罗贤锋游利兵徐健方晓东罗乐 . 基于激光诱导击穿光谱的元素成像技术研究进展. 激光技术, 2020, 44(1): 66-73. doi: 10.7510/jgjs.issn.1001-3806.2020.01.012
    [9] 冯彩玲王海旭秦水介 . 激光诱导等离子体加工石英微通道的研究. 激光技术, 2010, 34(4): 433-435,451. doi: 10.3969/j.issn.1001-3806.2010.04.001
    [10] 刘莉 . 双谱线内标对激光诱导击穿光谱稳定性的改善. 激光技术, 2015, 39(1): 90-95. doi: 10.7510/jgjs.issn.1001-3806.2015.01.018
    [11] 崔祖文向昱霖张宇璇吴玉兰何宇刘作业孙少华 . 铀酰溶液中铀含量的激光诱导击穿光谱测量. 激光技术, 2021, 45(3): 331-335. doi: 10.7510/jgjs.issn.1001-3806.2021.03.012
    [12] 刘宪云王振亚郝立庆赵文武黄明强龙波张为俊 . 激光诱导击穿光谱在生物医学中的应用. 激光技术, 2008, 32(2): 134-136.
    [13] 唐建左都罗杨晨光程祖海 . 脉冲CO2激光诱导空气等离子体的光谱诊断. 激光技术, 2013, 37(5): 636-641. doi: 10.7510/jgjs.issn.1001-3806.2013.05.016
    [14] 吴波吴云峰匡艳 . 激光直写制备薄膜铂电阻技术研究. 激光技术, 2012, 36(3): 379-381.
    [15] 王中何里卢飞星 . 非晶硅薄膜太阳能电池激光除边工艺研究. 激光技术, 2011, 35(2): 160-162. doi: 10.3969/j.issn.1001-3806.2011.02.005
    [16] 段军 . 激光微加工磁盘——激光毛化技术现状与发展. 激光技术, 2006, 30(5): 490-493.
    [17] 樊玉杰周建忠黄舒卫登辉王敏 . MEMS金属微构件的激光微喷丸强化技术分析与展望. 激光技术, 2010, 34(5): 665-669. doi: 10.3969/j.issn.1001-3806.2010.O5.024
    [18] 张宇赵远吴晓敏陈钟贤孙秀冬 . 多光谱探测与激光多光谱探测技术的进展. 激光技术, 2007, 31(2): 188-191.
    [19] 刘源李正佳吴奇彬 . Nd:YAG激光器切割硅薄膜太阳能电池的工艺参数研究. 激光技术, 2006, 30(3): 248-251.
    [20] 于益王卫民鲁燕华谢刚彭跃峰 . 二极管激光光谱合束技术实验研究. 激光技术, 2010, 34(1): 138-140. doi: 10.3969/j.issn.1001-3806.2010.01.039
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  3129
  • HTML全文浏览量:  2089
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 录用日期:  2022-01-19
  • 刊出日期:  2023-01-25

CdTe太阳电池激光诱导微区光谱响应研究

    通讯作者: 曾广根, zengggscu@163.com
    作者简介: 郑雨洁(1997-), 女, 硕士研究生, 主要从事太阳电池材料与器件方面的研究
  • 1. 四川大学 材料科学与工程学院, 成都 610064
  • 2. 英飞睿(成都)微系统技术有限公司, 成都 610299
  • 3. 江苏鹏举半导体设备技术有限公司, 南通 226010
基金项目:  四川省重点研发计划资助项目 22ZDYF2705校企合作项目 21H1155四川省科技成果转移转化示范项目 2021ZHCG0004四川大学-达州市人民政府战略合作项目 2020CDDZ-04四川大学实验技术立项项目 Scu202007

摘要: 为了反映器件几何尺度上各个区域的性能分布, 采用波长为852 nm且可调聚焦面积的激光束作用在CdTe薄膜太阳电池的P-N结微区表面, 产生定域诱导光致电流响应, 并通过设置样品台的步进方式, 得到了所测器件在几何面积范围内的微区光谱响应分布图, 获得更直观的器件电流分布均匀性和P-N结特性。结果表明, 这种测试方式能够简化且低成本地建立与CdS/CdTe异质结制作技术密切相关的沉积与后处理工艺参数和材料特性的联系, 进而获得异质结界面分布均匀性与太阳电池电流-电压(I-V)特性参数均匀性的对应关系。该研究可为提高太阳电池的性能提供实验测试依据。

English Abstract

    • 光谱响应测试是表征光电导器件和各种利用光生伏特效应的光电器件(如太阳电池、辐射探测器、光电二极管等)性能的重要手段[1]。通过测定光电器件在不同波长的单色光照射下的灵敏度,能够反映光电器件产生光电流信号的能力[2-3],进而探索器件的内部物理机制,比如载流子产生与分离、扩散长度与浓度、P-N结耗尽层分布等[4-5]

      传统的包括光谱响应在内的器件性能测试,都是把整个器件默认为一个均匀的点,所测得的参数也就是该器件的“平均”参数。这显然不能反映出器件几何尺度上各个区域性能的分布,难以获得器件性能的均匀程度对其它参数的影响,特别掩盖了与CdS/CdTe异质结制作技术密切相关的沉积与后处理工艺参数和材料特性的细节。随着光电器件日益朝小型化和薄膜化发展,器件的均匀性和重复性的研究变得越来越重要,如果能发展出一种可以进行器件微区步进扫描、逐点响应的局域测试技术,并与材料制备工艺进行有效的联动,这将是一件非常有意义的工作[6]。能够实现这种测试功能的主要是基于激光束诱导电流(laser beam induced current,LBIC)原理的分析类仪器[7-8]。早在1957年,WALLMARK就利用高强度的光聚焦在太阳电池表面研究光电信号随空间位置的变化[9]。LBIC是一种无损高分辨的测试方法,目前广泛地应用在光电器件性能的研究当中,通过采用低功率的激光照射在器件上,诱导产生电子-空穴对,在P-N结内建电场的作用下,产生定向的光致电流信号[10],该信号可以基于漂移-扩散模型进行泊松方程、电流密度方程和连续性方程的求解获得。值得指出的是,在LBIC测试中,若采用的光源与标准太阳辐照度相同(1000 W/m2),则产生的光电流信号非常小(通常为纳安量级),器件的暗电流影响较大。因此,必须采用具有相对较高辐照度的激光进行照射,以减少器件暗电流的影响。但激光的强度不能太高,否则在产生光电转换的同时还有剧烈的光热转换,容易对太阳电池造成损伤,甚至失效[11]

      本文中针对CdS/CdTe薄膜太阳电池微区光谱响应的研究,通过选用一定波长且可调聚焦面积的激光束作用在光电器件的P-N结微区表面,产生定域诱导光致电子响应,进一步的,通过设置样品台的步进方式,得到所测器件在几何面积范围内的微区光谱响应分布图,实现单个器件全面积的均匀性分析,获得更直观的器件电流分布和CdS/CdTe异质结特性[12]

    • 原有的光电器件光谱响应的测试,是通过光均匀地进入到入射狭缝上,经凹面镜平行照射到光栅上分光,当光栅转动时,从出射狭缝出来的光由短波到长波依次出现并作用在光电器件表面。测试光路如图 1a所示。本文中对现有的测试进行了重新设计,如图 1b所示。所用的测试单元包括:吉时利2400型数字源表,步进速度可调的样品台,波长分别为852 nm,808 nm,635 nm和405 nm的固态激光,强度为0 mW/cm2~2400 mW/cm2,光斑直径可调约100 μm,本实验中光斑直径为50 μm,通过Thorlabs光功率计标定样品台处光源强度。充分考察了构成CdTe太阳电池各膜层的材料性质与能带结构特性,如图 1c图 1d所示,并在各波段激光测试实验效果对比的基础上,选用波长为852 nm的激光进行测试。该波段激光能够直接作用在CdS/CdTe异质结界面处,产生最强的电流信号,以便建立P-N结微区特性与器件性能的直接关系。图 1中, EF是费米能级;EcEvEg分别是导带、价带和禁带;Vj是结电压。

      图  1  a, b—实验设计c, d—器件结构e—电池等效电路图

      Figure 1.  a, b—experimental design c, d—device structure e—equivalent circuit diagram

      在进行微区光谱响应测试前,采用瞬态光电流-电压(I-V)系统测试太阳电池的伏安特性曲线,模拟AM1.5的太阳光照条件(100 mW/cm2辐照),光强由GaAs标准太阳电池校准;采用PV Measurements公司QEX10系统测试太阳电池全面积的量子效率(quantum efficiency,QE)特性。

    • 本文中选用的CdTe太阳电池基本结构为glass/SnO2∶F/CdS/CdTe/ZnTe∶Cu/Au,由四川大学太阳能材料与器件研究所研制。实验中采用在同一玻璃衬底上制作的4组不同效率的电池进行研究分析,其瞬态I-V及全面积QE如图 2所示。图 2b中的纵坐标EQE表示外量子效率(external quantum efficiency)。电池性能如表 1所示。表 1中,VOC为开路电压;JSC为短路电流密度;FF(fill factor)为填充因子;Rs为单位面积的串联电阻;Rsh为单位面积的旁路电阻。

      图  2  不同效率的太阳电池光I-V特性及全面积QE特性

      Figure 2.  I-V characteristics and full-area QE characteristics of solar cells with different efficiencies

      表 1  电池性能参数

      Table 1.  Battery performance parameters

      No. VOC/mV JSC/(mA·cm-2) FF/% efficiency/% Rs/(Ω·cm2) Rsh/(Ω·cm2)
      1 751.6 23.98 69.06 12.45 5 1173
      2 771.5 24.20 67.12 12.53 6 1134
      3 741.8 23.23 62.78 10.82 8 614
      4 694.1 7.34 52.22 5.31 26 447

      综合图 2表 1中的结果可以看出,电池效率的下降,与电池的串联电阻Rs和旁路电阻Rsh关系密切,结合图 1e中太阳电池的双二极管模型,其I-V曲线方程如下[13]

      $ \begin{gathered} I=I_{\mathrm{ph}}-I_{\mathrm{D}_1}-I_{\mathrm{D}_2}-I_{\mathrm{sh}}= \\ I_{\mathrm{ph}}-I_{01}\left\{\exp \left[\frac{q\left(V+I R_{\mathrm{s}}\right)}{n_1 k_{\mathrm{B}} T}\right]-1\right\}- \\ I_{02}\left\{\exp \left[\frac{q\left(V+I R_{\mathrm{s}}\right)}{n_2 k_{\mathrm{B}} T}\right]-1\right\}-\frac{V+I R_{\mathrm{s}}}{R_{\mathrm{sh}}} \end{gathered} $

      (1)

      式中,I为输出电流,Iph为光生电流,ID1ID2为二极管暗电流,I01I02为相应的暗饱和电流,n1n2为相应的二极管理想因子,Ish为短路冲击电流,T为温度,q为电荷量,V为输出电压,kB为玻尔兹曼常数。4号电池大的串联电阻(26 Ω·cm2)和小的旁路电阻(447 Ω·cm2),导致短路电流(7.34 mA·cm-2)下降非常明显,对应着很低的光电转换效率(5.31%)。如图 1c所示,电池的串联电阻和旁路电阻与电池组成材料及结构关系密切。而对于全尺寸的电池,由于前后电极的导电性良好,导致载流子的收集存在平均性,图 2中的测试结果,并不能反映电池结构中各个微区的特性。采用激光逐点测试的方式,能够获得电池全面积上不同区域的光诱导电流分布情况,结果如图 3所示。该电流与电池对应区域的特性以及所使用的单色光波长密切相关。微区量子效率由公式获得:

      图  3  电池微区光谱响应

      Figure 3.  Local spectral response of solar cells

      $ E_{\mathrm{EQE}}(\lambda)=\frac{I_{\mathrm{SC}} h c}{e \lambda P(\lambda)} $

      (2)

      式中, ISC为短路电路的电流,h为普朗克常数,P(λ)为激光照射强度,c为光速,e为元电荷,λ为波长。由于激光的照射面积只占整个电池面积很小的一部分,收集到的电流由方程给出:

      $ I_{\mathrm{ph}}=I_{\mathrm{ph}, 0}-C_{\mathrm{rec}} I_{\mathrm{d}}^3 $

      (3)

      式中, Iph,0为该区域的光生电流,CrecId3为电流复合损失[14], Crec为与载流子复合相关的常数,Id为暗电流。

      CdTe太阳电池的电流大小受空间电荷区(space charge region,SCR)和准中性区(quasi neutral region,QNR)的影响。在SCR区中,电流大小与前电极掺杂氟的SnO2透明导电玻璃(fluorine doped tin oxide,FTO)/窗口层CdS的势垒高度,CdS/CdTe耗尽层宽度及界面态有关。在QNR区,电流主要与背接触势垒有关。由于本文中所用的电池均有背接触层ZnTe∶Cu,能够有效地降低QNR区的势垒[15],因此电流大小主要与SCR区中CdS/CdTe结特性有关。对于第4号样品,由于载流子在内建电场下漂移电流的影响,以及CdS和CdTe材料中缺陷形成的复合中心会减小可迁移的载流子数目,使得该处的LBIC信号变小。理想情况下,在少子扩散长度内的光生载流子都有可能通过扩散到达结区边界从而对LBIC信号产生贡献,测量得到的LBIC电流信号根据激光照射处离开结区边界的距离d呈指数规律衰减:

      $ I=k \mathrm{e}^{-d / L} $

      (4)

      式中,k为比例常数,L为扩散长度。因此,电池电流信号的下降,也就意味着激光与P-N结边界作用距离增加,载流子的扩散长度变小[16]。而对于CdS/CdTe太阳电池,其能带结构如图 1d所示。根据半导体材料本征吸收定理,在852 nm波长的激光作用下,光子能够依次透过衬底玻璃,透明导电薄膜SnO2∶F以及硫化镉窗口层,到达CdS/CdTe结区,并产生诱导电流。然而当P-N结特性较差时,往往耗尽层宽度增大,界面缺陷增多,导致载流子的产生、分离及输运发生变化。结合(1)式可知,在光生电流减小的同时,如果串联电阻变大而旁路电阻变小,将直接导致输出电流变小。从测试结果来看,1~4号样品的平均光诱导电流分别为:0.044315 mA,0.043794 mA,0.037668 mA以及0.013295 mA。本文中同时计算了电流的几何分布情况,样品光诱导电流的标准偏差分别为:0.003635,0.003318,0.00309以及0.001091,如图 4所示。选用的电池最高光电转换效率为12.53%,其串联电阻为6 Ω·cm2,旁路电阻为1134 Ω·cm2,与该种电池的实验最高转换效率差距较大[17],电池的激光诱导电流均有一定的起伏,说明本文中选中的4个电池,均匀性有待提高,CdS/CdTe异质结的制作工艺还有待优化,特别是碲化镉的制备及后期的扩散退火工艺需要严格控制[18]。4号电池的激光诱导电流变化幅度相对较小,这可能是由于电池的串联电阻较大而旁路电阻较小,整个器件结特性变差,载流子产生、分离及输运趋于平均所致。另外根据图 1e中的电池等效电路图,在开路电压较小(小于0.7 V)时,流经P-N结的电流将被限制在较小的范围。

      图  4  样品微区激光诱导电流分布情况

      Figure 4.  Laser-induced current distribution of different samples

    • glass/SnO2∶F/CdS/CdTe/ZnTe∶Cu/Au太阳电池由具有不同光学能隙的材料组成,其中吸收层CdTe的带隙为1.45 eV,QE测试表明,CdS/CdTe太阳电池能够吸收波长小于855 nm的光子并产生光谱响应, 性能不同的电池,光谱响应度差别较大。本文中选用852 nm的激光,能够直接作用到CdS/CdTe异质结界面处,进而产生微区诱导电流信号。通过电流大小及均匀性的分析能够获得空间电荷区CdS/CdTe的结特性。对于效率较低的电池,由于器件耗尽层变宽,内建电场强度减小,电池内部复合中心增多,导致激光作用位置发生变化,进而使得可迁移的载流子数目及扩散长度减少,宏观表现出电池的串联电阻变大,旁路电阻减少,最终局部LBIC信号变小。通过本文中的研究,能够获得与器件局部特征密切相关的激光诱导电流信号,建立器件光谱响应的几何分布均匀性与结特性的联系,能够为器件的深入研究和制作工艺的优化提供实验测试支撑。

参考文献 (18)

目录

    /

    返回文章
    返回