[1] KENNEDY P K, HAMMER D X, ROCKWELL B A. Laser-induced breakdown in aqueous media[J]. Progress in Quantum Electronics, 1997, 21(3): 155-248. doi: 10.1016/S0079-6727(97)00002-5
[2] NITIN S. The first coupling of a laser beam to a water jet[J]. Photonics Views, 2021, 18(1): 72-76. doi: 10.1002/phvs.202100014
[3] GOBET M, OBI S, PAVIUS M, et al. Implementation of short-pulse lasers for wafer scribing and grooving applications[J]. Journal of Laser Micro Nanoengineering, 2010, 5(1): 16-20. doi: 10.2961/jlmn.2010.01.0004
[4] QIAO H Ch, CAO Zh H, CUI J F, et al. Experimental study on water jet guided laser micro-machining of mono-crystalline silicon[J]. Optics and Laser Technology, 2021, 140(4): 107057.
[5] PAUCHARD, LEE K, VÁGÓ N, et al. Advanced micromachining combining nanosecond lasers with water jet-guided laser technology[J]. Proceedings of the SPIE, 2009, 7201: 72010A. doi: 10.1117/12.814712
[6] ZHANG G Y, ZHANG Z, WANG Y F, et al. Gas shrinking laminar flow for robust high-power waterjet laser processing technology[J]. Optics Express, 2019, 27(26): 38635-38644. doi: 10.1364/OE.378328
[7] 谭淞年. SiCp/Al复合材料的水导激光加工技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 10-21.TAN S N. Study on water guided laser processing technology of SiCp/Al composites[D]. Harbin: Harbin Institute of Technology, 2014: 10-21(in Chinese).
[8] BOTYGINA N N, BUKATYI V I, LEVITSKⅡ M E. The influence of thermal defocusing on the measurement of water transmissivity in a laser radiation field[J]. Soviet Physics Journal, 1978, 21(8): 1092-1094. doi: 10.1007/BF00892374
[9] RICHERZHAGEN B. Interferometer for measuring the absolute refractive index of liquid water as a function of temperature at 1.064 μm[J]. Applied Optics, 1996, 35(10): 1650-1653. doi: 10.1364/AO.35.001650
[10] XU J J, DAVIS S H. Instability of capillary jets with thermocapilla-rity[J]. Journal of Fluid Mechanics, 1985, 161(1): 1-25.
[11] MASHAYE F, ASHGRIZ N. Nonlinear instability of liquid jets with thermocapillarity[J]. Journal of Fluid Mechanics, 1995, 283: 97-123. doi: 10.1017/S0022112095002242
[12] CHRISTIAN B, HENNING J, MARKUS E, et al. Thermal investigation of interaction between high-power CW-laser radiation and a water-jet[J]. Physics Procedia, 2016, 83: 317-327. doi: 10.1016/j.phpro.2016.08.033
[13] COUTY P, SPIEGEL Á, VÁGÓ N, et al. Laser-induced break-up of water jet waveguide[J]. Experiments in Fluids, 2004, 36: 919-927. doi: 10.1007/s00348-003-0775-x
[14] PINNICK R G, GILBERT L, FERNANDEZ J, et al. Stimulated Raman scattering and lasing in micrometer-sized cylindrical liquid jets time and spectral dependence[J]. Journal of the Optical Society of America, 1992, B9(6): 865-870.
[15] SPIEGEL Á, VÁGÓ N, WAGNER F R. High efficiency Raman scattering in micrometer-sized water jets[J]. Optical Engineering, 2004, 43(2): 450-454. doi: 10.1117/1.1634292
[16] MULLICK S, MADHUKAR Y K, KUMAR S, et al. Temperature and intensity dependence of Yb-fiber laser light absorption in water[J]. Applied Optics, 2011, 50(34): 6319-6326. doi: 10.1364/AO.50.006319
[17] 王水旺, 丁烨, 程柏, 等. 水导激光微加工机理与研究进展[J]. 中国激光, 2022, 49(10): 1002404.WANG Sh W, DING Y, CHENG B, et al. Research progress and mechanism of water-guided laser micromachining[J]. Chinese Journal of Lasers, 2022, 49(10): 1002404(in Chinese).
[18] 杨林帆, 焦辉, 黄宇星, 等. 基于水导激光平面缩流喷嘴内流场仿真研究[J]. 激光技术, 2020, 44(6): 754-761.YANG L F, JIAO H, HUANG Y X, et al. Simulation study of the flow field in the plane convergent nozzle based on the water guide laser[J]. Laser Technology, 2020, 44(6): 754-761(in Chinese).
[19] 张光辉, 黄宇星, 黄平, 等. 水导激光技术中水光耦合传能规律研究[J]. 激光技术, 2022, 46(6): 749-754.ZHANG G H, HUANG Y X, HUANG P, et al. Study on energy transmission law of water-laser coupling in water-jet guided laser technology[J]. Laser Technology, 2022, 46(6): 749-754(in Ch-inese).
[20] DENG C, YEO H R, KI H. Electrodynamic simulation of laser beam propagation in waterjet-guided laser processing[J]. Optical Express, 2020, 28(8): 11128-11143. doi: 10.1364/OE.389497