Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 40 Issue 6
Sep.  2016
Article Contents
Turn off MathJax

Citation:

Experimental research of CO2 laser-induced liquid droplet jet flow plasma

  • Corresponding author: WANG Xinbing, xbwang@hust.edu.cn
  • Received Date: 2015-11-20
    Accepted Date: 2016-01-11
  • In order to study the characteristics and the evolution of laser-induced liquid droplet jet flow plasma, the behaviors of laser-induced liquid droplet plasma were investigated by the shadow method based on laser-droplet interaction system. Time-series images of CO2 laser-induced plasma with liquid droplet were captured. The evolution of air shock wave was obtained and the energy of shockwaves was estimated by theoretical model. The results show that air shock wave occurrs with laser-induced plasma and the radial expansion of shockwaves increases linearly under current time range. In addition, laser energy dissipated in the droplet was estimated to 32% for generating air shockwaves. The characteristics and the evolution of shockwaves generated by laser-induced droplet could provide a reference for laser induced fuel spray ignition.
  • 加载中
  • [1]

    ZHAO F, HARRINGTON D L, LAI M C D. Automotive gasoline direct-injection engines[J]. Revolution, 2002, 2004(1):3-8.
    [2]

    WIJETUNGE R S, BRACE C J, HAWLEY J G, et al. Dynamic behaviour of a high speed direct injection diesel engine[R]. Detroit,USA:SAE International, 1999:1-829.
    [3]

    HONDA T, KAWAMOTO M, KATASHIBA H, et al. A study of mixture formation and combustion for spray guided DISI[R]. Detroit,USA:SAE International, 2004:1-46.
    [4]

    DAHMS R, FANSLER T D, DRAKE M C, et al. Modeling ignition phenomena in spray-guided spark-ignited engines[J]. Proceedings of the Combustion Institute, 2009, 32(2):2743-2750.
    [5]

    KAWAHARA N, TOMITA E, KADOWAKI T, et al.In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method[J]. Experiments in Fluids, 2010, 49(4):925-936.
    [6]

    GUPTA S. Technologies for gaseous fueled advanced reciprocating engine systems[C]//US DOE Industrial Distributed Energy Portfolio Review Meeting.Washington DC,USA:United States Department of Energy, 2011:DE-AC02-06CH 11357.
    [7]

    CREMERS D A, YUEH F Y, SINGH J P, et al.Laser-induced breakdown spectroscopy, elemental analysis[M]. New York,USA:John Wiley Sons, 2006:53-62.
    [8]

    SINGH J P, THAKUR S N. Laser-induced breakdown spectroscopy[M].Amsterdam, Netherlands:Elsevier, 2007:42-53.
    [9]

    KAWAHARA N, BEDUNEAU J L, NAKAYAMA T, et al. Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air[J]. Applied Physics, 2007, B86(4):605-614.
    [10]

    BEDUNEAU J L, KAWAHARA N, NAKAYAMA T, et al. Laser-induced radical generation and evolution to a self-sustaining flame[J]. Combustion and Flame, 2009, 156(3):642-656.
    [11]

    GROB V, KUBACH H, SPICHER U, et al. Influence of laser-induced ignition on spray-guided combustion-experimental results and numerical simulation of ignition processes[R]. Detroit,USA:SAE International, 2009:1-2623.
    [12]

    PICKETT L M, KOOK S, PERSSON H, et al. Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition[J]. Proceedings of the Combustion Institute, 2009, 32(2):2793-2800.
    [13]

    CHEN Z Q, WANG X B, ZUO D L, et al. Detecting tin droplet used for EUV source[J]. High Power Laser and Particle Beams, 2014, 26(12):39-43(in Chinese).
    [14]

    RAYLEIGH L. On the instability of jets[J]. Proceedings of the London Mathematical Society, 1878,S1/10(1):4-13.
    [15]

    LI X Q, HONG Y J, HE G Q, et al. Status of study on the effect of laser radiation to water droplet[J]. Laser Journal, 2007, 28(4):70-72(in Chinese).
    [16]

    KAFALAS P, FERDINAND A P. Fog droplet vaporization and fragmentation by a 10.6m laser pulse[J]. Applied Optics, 1973, 12(1):29-33.
    [17]

    JEONG S H, GREIF R, RUSSO R E. Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples[J]. Journal of Physics, 1999, D32(19):2578-2585.
    [18]

    ADEN M, KREUTZ E W, WISSENBACH K. The applicability of the Sedov-Taylor scaling during material removal of metals and oxide layers with pulsed and excimer laser radiation[J]. Journal of Physics, 1997, D30(6):980-989.
    [19]

    JEON C, HARPER D, LIM K, et al. Interaction of a single laser filament with a single water droplet[J]. Journal of Optics, 2015, 17(5):055502.
    [20]

    KAFALAS P, HERRMANN J. Dynamics and energetics of the explosive vaporization of fog droplets by a 10.6m laser pulse[J]. Applied Optics, 1973, 12(4):772-775.
    [21]

    TIANHANG L, ZUOQIANG H, XUN G, et al. Shadowgraph investigation of plasma shock wave evolution from Al target under 355nm laser ablation[J]. Chinese Physics, 2014, B23(8):085203.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(7196) PDF downloads(263) Cited by()

Proportional views

Experimental research of CO2 laser-induced liquid droplet jet flow plasma

    Corresponding author: WANG Xinbing, xbwang@hust.edu.cn
  • 1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan 470074, China

Abstract: In order to study the characteristics and the evolution of laser-induced liquid droplet jet flow plasma, the behaviors of laser-induced liquid droplet plasma were investigated by the shadow method based on laser-droplet interaction system. Time-series images of CO2 laser-induced plasma with liquid droplet were captured. The evolution of air shock wave was obtained and the energy of shockwaves was estimated by theoretical model. The results show that air shock wave occurrs with laser-induced plasma and the radial expansion of shockwaves increases linearly under current time range. In addition, laser energy dissipated in the droplet was estimated to 32% for generating air shockwaves. The characteristics and the evolution of shockwaves generated by laser-induced droplet could provide a reference for laser induced fuel spray ignition.

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return