Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 44 Issue 2
Apr.  2020
Article Contents
Turn off MathJax

Citation:

Cavity-enhanced Raman spectroscopy of blue-violet light

  • Corresponding author: ZUO Duluo, zuoduluo@hust.edu.cn
  • Received Date: 2019-04-18
    Accepted Date: 2019-05-29
  • Raman spectroscopy was nondestructive and rapid method for the determination of substance composition. In order to improve the sensitivity of monitoring, the cavity-enhanced spontaneous Raman scattering of 408nm band semiconductor laser was studied. 408nm semiconductor laser with output power of 500mW and linewidth of 0.9nm was used as excitation light. The laser was coupled into confocal spherical mirror cavity. The reflectivity of two-sided confocal spherical mirrors was 96.5% and 99.5%, respectively. Some lasers returned to the semiconductor laser to form optical feedback. Semiconductor laser resonated with confocal cavity. The optical feedback process of the device was discussed. The mode matching and frequency matching of the external cavity were analyzed respectively. The results show that, the power in the confocal cavity reaches 15W. The power is increased by 30 times. Raman signals are collected with 90° probe configuration. Air Raman signal detection has been completed. 900 counts of N2 signal are obtained in 1s integration time. The results show that the resonance enhanced cavity greatly enhances the Raman scattering signal and has the potential to be used in the on-line detection or high-sensitivity detection of a variety of gases.
  • 加载中
  • [1]

    HANF S, BÖGÖZI T, KEINER R, et al. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath[J]. Analytical Chemistry, 2015, 87(2):982-988.
    [2]

    BURIC M P, CHEN K, FALK J, et al. Raman sensing of fuel gases using a reflective coating capillary optical fiber[J]. Proceedings of the SPIE, 2009, 7316:731608. doi: 10.1117/12.818746
    [3]

    KEINER R, HERRMANN M, KVSEL K, et al. Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing[J]. Analytica Chimica Acta, 2015, 864:39-47. doi: 10.1016/j.aca.2015.02.007
    [4]

    FRISS A J, LIMBACH C M, YALIN A P. Cavity-enhanced rotational Raman scattering in gases using a 20mW near-infrared fiber laser[J]. Optics Letters, 2016, 41(14):3193-3196. doi: 10.1364/OL.41.003193
    [5]

    LI X, XIA Y, ZHAN L, et al. Near-confocal cavity-enhanced Raman spectroscopy for multitrace-gas detection.[J]. Optics Letters, 2008, 33(18):2143-2145. doi: 10.1364/OL.33.002143
    [6]

    KING D A, PITTARO R J. Simple diode pumping of a power-buildup cavity[J]. Optics Letters, 1998, 23(10):774-776. doi: 10.1364/OL.23.000774
    [7]

    OHARA S, YAMAGUCHI S, ENDO M, et al. Performance characteristics of power build-up cavity for raman spectroscopic measurement[J]. Optical Review, 2003, 10(5):342-345. doi: 10.1007/s10043-003-0342-y
    [8]

    SATO J, ENDO M, YAMAGUCHI S, et al. Simple annular-beam generator with a laser-diode-pumped axially off-set power build-up cavity[J]. Optics Communications, 2007, 277(2):342-348. doi: 10.1016/j.optcom.2007.05.015
    [9]

    KEINER R, FROSCH T, HANF S, et al. Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria[J]. Analytical Chemistry, 2013, 85(18):8708-8714. doi: 10.1021/ac401699d
    [10]

    KEINER R, FROSCH T, MASSAD T, et al. Enhanced Raman multigas sensing—a novel tool for control and analysis of 13CO2 labeling experiments in environmental research[J]. Analyst, 2014, 139(16):3879-3884. doi: 10.1039/C3AN01971C
    [11]

    HIPPLER M. Cavity-enhanced Raman spectroscopy of natural gas with optical feedback CW-diode lasers[J]. Analytical Chemistry, 2015, 87(15):7803-7809. doi: 10.1021/acs.analchem.5b01462
    [12]

    SALTER R, CHU J, HIPPLER M. Cavity-enhanced Raman spectroscopy with optical feedback CW diode lasers for gas phase analysis and spectroscopy[J]. The Analyst, 2012, 137(20):4669-4676. doi: 10.1039/c2an35722d
    [13]

    HIPPLER M, MOHR C, KEEN K A, et al. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback CW diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy[J]. Journal of Chemical Physics, 2010, 133(4):044308. doi: 10.1063/1.3461061
    [14]

    ZUO D L, YU A L, LI Z, et al. Application of imaging spectrometer in gas analysis by Raman scattering[J]. Proceedings of the SPIE, 2015, 9611:96110N.
    [15]

    DAHMANI B, HOLLBERG L, DRULLINGER R. Frequency stabilization of semiconductor lasers by resonant optical feedback[J]. Optics Letters, 1987, 12(11):876-878. doi: 10.1364/OL.12.000876
    [16]

    LAURENT P, CLAIRON A, BRÉANT C. Frequency noise analysis of optically self-locked diode lasers[J]. IEEE Journal of Quantum Electronics, 1989, 25(6):1131-1142. doi: 10.1109/3.29238
    [17]

    LEWOCZKO-ADAMCZYK W, PYRLIK C, HÄGER J, et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity[J]. Optics Express, 2015, 23(8):9705-9709. doi: 10.1364/OE.23.009705
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article views(5834) PDF downloads(17) Cited by()

Proportional views

Cavity-enhanced Raman spectroscopy of blue-violet light

    Corresponding author: ZUO Duluo, zuoduluo@hust.edu.cn
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract: Raman spectroscopy was nondestructive and rapid method for the determination of substance composition. In order to improve the sensitivity of monitoring, the cavity-enhanced spontaneous Raman scattering of 408nm band semiconductor laser was studied. 408nm semiconductor laser with output power of 500mW and linewidth of 0.9nm was used as excitation light. The laser was coupled into confocal spherical mirror cavity. The reflectivity of two-sided confocal spherical mirrors was 96.5% and 99.5%, respectively. Some lasers returned to the semiconductor laser to form optical feedback. Semiconductor laser resonated with confocal cavity. The optical feedback process of the device was discussed. The mode matching and frequency matching of the external cavity were analyzed respectively. The results show that, the power in the confocal cavity reaches 15W. The power is increased by 30 times. Raman signals are collected with 90° probe configuration. Air Raman signal detection has been completed. 900 counts of N2 signal are obtained in 1s integration time. The results show that the resonance enhanced cavity greatly enhances the Raman scattering signal and has the potential to be used in the on-line detection or high-sensitivity detection of a variety of gases.

引言
  • 喇曼散射光谱是一种无损、快速检测物质成分的方法。喇曼光谱可以同时检测多种气体的成分,所以常被用于医疗检查[1]、燃气成分检查[2]、化学反应监测[3]、高分辨率光谱实验[4]等领域。但是, 当喇曼光谱被用于检测气体时,由于散射信号十分微弱,信号易受背景荧光干扰,不利于在生活和工业现场进行检测。

    激发光波长越短,信号光越强;激发光作用长度越长,信号越强。所以,常常使用大功率短波长的激光器激发,用长程腔作气体池[5],增大信号强度。

    大功率激光器和长程气体池价格昂贵、体积庞大,不利于广泛使用。本文中研究半导体激光器的外腔增强。使用半导体激光器外腔增强能有效增大激发光功率,而且价格便宜、体积小。该方案由KING等人提出[6],他们使用的半导体激光器初始光强为10mW,在外腔中放大了10000倍,变成100W的激光。后来,OHARA等人[7-8]和KEINER等人[3, 9-10]也建立了类似的装置,外腔功率达到80W,获得了纯氮气的喇曼散射光谱。HIPPLER等人[11-13]提出了伺服电路半导体外腔增强的方案,获得了2.5W的外腔功率,另外,他们使用的是单纵模外腔半导体激光器,检测分辨率大大提高,获得了清晰的空气喇曼散射光谱和天然气喇曼散射光谱。本文中提出了一种新的外腔增强方案,利用了光反馈原理,使外腔被动锁定。本方中案具有结构简单,效果好的优点。

1.   实验装置
  • 自发喇曼散射的信号强度I与激发光光强、激发光波长和收集立体角等参量有关。公式如下:

    式中,I是信号强度,Ilaser是激发光光强,n是气体分子密度,leff是激发光作用长度,$\frac{\mathrm{d} \sigma_{\mathrm{R}}}{\mathrm{d} \mathit{\Omega}} $是微分喇曼散射截面,Ω是收集立体角。喇曼散射截面与激发光波长有关,关系是: ${\sigma _{\rm{R}}}(\lambda ) \sim {\left( {\frac{1}{\lambda }} \right)^4} $。

    基于半导体激光器共振外腔的喇曼散射实验装置如图 1所示。该装置包括腔增强装置与喇曼光谱检测系统。试验中,采用90°构型收集喇曼散射光。使用的激光器是无减反膜处理的半导体激光二极管(laser diode,LD)(CLD405500K, NICHIA),波长在408nm左右,线宽为0.9nm, 最大功率为500mW。激光被准直透镜(C671TME-405, Thorlabs)耦合入外腔,焦距为4.01mm。外腔由两块球面镜组成,曲率半径为50mm,R1的反射率为96.5%,R2的反射率为99.5%,两球面镜相隔50mm摆放。透镜L2在外腔的旁侧,用于收集喇曼散射光,焦距为40mm。长通滤光片F(BLP01-405R-25,Sem-rock)用于滤除漫反射光和瑞利散射光。使用的光谱仪是实验室自制的光谱仪[14]

    Figure 1.  Experimental setup

2.   实验结果和讨论
  • 使用共焦法布里-珀罗(Fabry-Perot,F-P)腔作为外腔。当激光注入F-P腔时,若想让激光在F-P腔内积累,并透过F-P腔,需要进行模式匹配,包括横模匹配(注入激光束光强分布与共振外腔横模的匹配)和纵模匹配(注入激光束频率与共振外腔)。

    匹配的方法如下:把激光聚焦,使得束腰半径w1等于共焦腔本征模式的束腰半径w0,使光束的波前和腔镜相重合。试验中把激光器出射光束的慢轴聚焦为50μm,共焦腔本征模式的束腰半径为46μm。由于使用的是对称共焦腔,对称共焦腔具有自再现传输的功能,所以对模式匹配的要求不高,仅需要w1大致等于w0

    按如下的方式考虑纵模匹配。外腔形成驻波腔,自由光谱范围为:

    式中,c是光速,L为外腔腔长,由于L=50mm,νFSR=3GHz。

    精细度公式为:

    左腔镜的反射率R1=96.5%, 右腔镜的反射率R2=99.5%, 精细度大概为160。带宽Δν易得:

    求得带宽Δν=18.75MHz。

    所使用的激光器的线宽为1716.5GHz左右,纵模间隔大概为48.9GHz。从自由光谱范围上来看,由于外腔和激光器的自由光谱范围相差很大,光线中的大部分无法透过外腔,但是由于半导体激光器的光反馈效应,半导体激光器的出射波长会受外界光影响,半导体激光器和外腔相同波长的光线会得到反馈和增强,内外腔形成共振,光线能够透过外腔。

    为了使腔镜3的直接反射光不直接返回激光器,干扰光反馈,共焦腔与光轴倾斜摆放[15-17],具体光路如图 2所示。

    Figure 2.  Light path

    光束Ⅱ倾斜射出,外腔出射的光束Ⅰ返回激光器,形成光反馈。

    外输入光功率P1=500mW,输出功率P2=38mW,反射率R =98%,腔内总功率P3=P2/(1-R), 求得腔内单向功率为7.5W,总功率为15W, 腔内功率增强倍数为30。

  • 直接在实验室的空气环境中进行实验。经过对准和聚焦之后,积分50s,在CCD中获得了如图 3所示的图像。

    Figure 3.  CCD photograph of Raman scattering signal

    图 3中,左边白线是泄漏的激发光和瑞利散射信号,从左往右两个白点依次是O2、N2信号。

    积分时间1s,获得光谱,扣除基线后得到图 4

    Figure 4.  Raman spectra of air with integration time of 1s

    图 4中,能清晰看到O2, N2, H2O信号。去除基线后,1s积分时间,获得N2信号900个计数,说明在1s这样短的积分时间内,能获得比较强的喇曼散射信号,这说明了共振腔有效地增强了信号。另外,基线比较平坦,说明荧光背景比较弱,这有利于提高检测灵敏度,用于痕量气体的分析。

    积分50s获得光谱,扣除基线获得图 5

    Figure 5.  Raman spectra of air with integration time of 50s

    积分50s的情况下,以3000cm-1~3300cm-1范围内的平均强度为基线,获得N2信号强度为31792。以其标准偏差为噪声,得到信噪比为1989。信号的分辨率为40cm-1

    积分50s的光谱细节图如图 6所示。

    Figure 6.  Raman spectra of air with integration time of 50s

    图 6所示,1处信号为激发光信号;2处的阶梯形状是长通滤光片的作用造成,在这之前荧光背景较弱,在这之后荧光背景较为明显;3处信号为SiO2; 4处信号为O2;5处信号为N2;6处信号经过前后对比,为激发光的信号;7处信号为H2O;8处信号在4600cm-1附近,它的来源还有待分析。

3.   结论
  • 为了提高自发喇曼散射的信号强度,本文中设计了一套半导体激光器外腔增强腔,并开展了就该装置的空气喇曼实验。实验结果表明,共振腔将激光功率放大约30倍,喇曼信号显著增强,信噪比高。

    由于使用的是被动式光反馈腔增强原理,装置不需要电路辅助,装置简单、可靠性好,而且抗振动能力强,能长时间保持腔增强状态。

    在空气喇曼实验中,积分时间1s即获得了强烈的喇曼散射信号。但是由于激发光的线宽比较宽,使得检测分辨率只有40cm-1。这一分辨率无法用于多种燃气混合气体检测。

    压窄半导体激光器的线宽有许多方法,比如双折射滤光片、干涉滤光片、标准具等。这些器件有一个窄的透射峰,通过减小部分波长透过率,使部分波长起振,激光线宽变窄。

    在后续研究中,将采取措施压窄激发光线宽,提高检测分辨本领,拓宽该装置的应用范围。

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return