Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 45 Issue 2
Mar.  2021
Article Contents
Turn off MathJax

Citation:

Improve the extraction efficiency of graphene

  • Corresponding author: FANG Xiaomin, zhjfangxiaomin@163.com
  • Received Date: 2020-03-06
    Accepted Date: 2020-04-27
  • In order to improve the low light extraction efficiency(LEE) of graphene UV light-emitting diode (LED) due to the high absorption of indium tin oxide (ITO) thin layer to UV light, the ITO micro nano structure (rectangle and triangle) was used as the buffer layer of graphene UV LED. The ITO micro nano structure was optimized and graphene UV LED was theoretically analyzed by the finite difference time domain method. The results show that when the thickness, duty cycle and period of rectangular micro nano structure are 160nm and 0.7, 220nm respectively, the LEE of UV LED can reach 10.668% under single graphene. The use of rectangular micro structure as the insertion layer is 45.06% higher than that of ITO thin layer as the insertion layer, while when the triangular micro nano structure is in the optimal parameters, the LEE of graphene UV LED is only 6.64%, significantly lower than that of ITO thin layer. This study can provide a theoretical basis for the subsequent preparation of high-power UV LED.
  • 加载中
  • [1]

    YE S, WANG Z, TANG L, et al. Electro-absorption optical modulator using dual-graphene-on-graphene configuration[J]. Optics Express, 2014, 22(21): 26173-26180. doi: 10.1364/OE.22.026173
    [2]

    ZHAO Z, LI G, YU F, et al. Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber[J]. Plasmonics, 2018, 13(6): 2267-2272. doi: 10.1007/s11468-018-0748-9
    [3]

    JIANG X W, WU H, YUAN Sh C. Enhancement of graphene three-channel optical absorption based on metal grating[J] Acta Physica Sinica, 2019, 68(13): 138101(in Chinese). doi: 10.7498/aps.68.20182173
    [4]

    MIN J H, SON M, BAE S Y, et al. Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes[J]. Optics Express, 2014, 22(s4): A1040-A1050. doi: 10.1364/OE.22.0A1040
    [5]

    SEO T H, OH T S, CHAE S J, et al. Enhanced light output power of GaN light-emitting diodes with graphene film as a transparent conducting electrode[J]. Japanese Journal of Applied Physics, 2011, 50(12): 125103.
    [6]

    KUN X, CHEN X, JUN D, et al. Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin o-xide contact layers for GaN light emitting diodes[J]. Applied Physics Le-tters, 2013, 102(16): 162102. doi: 10.1063/1.4802798
    [7]

    XUE Sh J, FANG L, LONG X M, et al. Influence of ITO, graphene thickness and electrodes buried depth on LED, thermal-electrical characteristics using numerical simulation[J]. Chinese Physical Le-tters, 2014, 2(31): 137-140.
    [8]

    SHIM J P, SEONG W S, MIN J H, et al. Size-controlled InGaN/GaN nanorod LEDs with an ITO/graphene transparent layer[J]. Nanotechnology, 2016, 27(46): 465202. doi: 10.1088/0957-4484/27/46/465202
    [9]

    QIAN M C, ZHANG SH F, LUO H J, et al. Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes[J]. Chinese Physics, 2017, B26(10): 287-292.
    [10]

    LI L, YIYU O, XIAOLONG Z, et al. InGaN/GaN ultraviolet LED with a graphene/AZO transparent current spreading layer[J]. Optical Materials Express, 2018, 8(7): 1818-1826. doi: 10.1364/OME.8.001818
    [11]

    NARUKAWA Y, NIKI I, IZUNO K, et al. Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip[J]. Japanese Journal of Applied Physics, 2002, 41(2): L371-L373.
    [12]

    DASGUPTA P K, LI Q, TEMKIN H, et al. Applications of deep UV LEDs to chemical and biological sensing[J]. Proceedings of the SPIE, 2004, 5530: 25-32.
    [13]

    YANG H, CAO Y, HE J H, et al. Research progress in graphene-based infrared photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110003(in Chinese).
    [14]

    LI W. Study of improving light emitting efficiency of GaN based LED by surface micro structures[D].Ji'nan: Shandong University, 2014: 35-37(in Chinese).
    [15]

    SEO T H, LEE K J, PARK A H, et al. Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode[J]. Optics Express, 2011, 19(23): 23111. doi: 10.1364/OE.19.023111
    [16]

    GOLDHAHN R, SCHEINER J, SHOKHOVETS S, et al. Refractive index and gap energy of cubic InxGa1-xN[J]. Applied Physics Le-tters, 2000, 76(3): 291-293. doi: 10.1063/1.125725
    [17]

    ROBERT J M, JACOB P H. Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors[J]. Optica, 2016, 3(2): 112-117. doi: 10.1364/OPTICA.3.000112
    [18]

    LI W, YUE Q Y, Kong F M, et al. Influence of surface ZnO nano-structures on the light emitting efficiency of GaN-based LED[J]. Acta Photonica Sinica, 2013, 42(4): 409-425(in Chinese). doi: 10.3788/gzxb20134204.0409
    [19]

    LIU H. Study on enhancing the light extraction efficiency of GaN-based light emitting diodes by photonic crystal and one dimensional grating structure[D].Wuhan: Huazhong University of Science and Technology, 2014: 25-61(in Chinese).
    [20]

    MATIOLI E, RANGEL E, IZA M, et al. High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals[J]. Applied Physics Letters, 2010, 96(3): 031108. doi: 10.1063/1.3293442
    [21]

    WANG X M, LI K, KONG F M, et al. Effect of structure of nano hemisphere microlens array on light extraction efficiency of GaN LED[J]. Acta Optica Sincia, 2012, 32(12): 1223001(in Chinese). doi: 10.3788/AOS201232.1223001
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article views(6123) PDF downloads(24) Cited by()

Proportional views

Improve the extraction efficiency of graphene

    Corresponding author: FANG Xiaomin, zhjfangxiaomin@163.com
  • 1. College of Information Engineering, Quzhou College of Technology, Quzhou 324000, China
  • 2. Key Laboratory of Optoelectronic Technology of Ministry of Education, Beijing University of Technology, Beijing 100124, China

Abstract: In order to improve the low light extraction efficiency(LEE) of graphene UV light-emitting diode (LED) due to the high absorption of indium tin oxide (ITO) thin layer to UV light, the ITO micro nano structure (rectangle and triangle) was used as the buffer layer of graphene UV LED. The ITO micro nano structure was optimized and graphene UV LED was theoretically analyzed by the finite difference time domain method. The results show that when the thickness, duty cycle and period of rectangular micro nano structure are 160nm and 0.7, 220nm respectively, the LEE of UV LED can reach 10.668% under single graphene. The use of rectangular micro structure as the insertion layer is 45.06% higher than that of ITO thin layer as the insertion layer, while when the triangular micro nano structure is in the optimal parameters, the LEE of graphene UV LED is only 6.64%, significantly lower than that of ITO thin layer. This study can provide a theoretical basis for the subsequent preparation of high-power UV LED.

引言
  • 由于石墨烯对大部分波段的光都具有超高透射率, 且具有极高的电子迁移率和较好的导热性[1-3],因此其一直是替代铟锡氧化物(indium tin oxide, ITO)作为发光二极管(light-emitting diode, LED)透明导电层的热门选择[4]。2011年,SEO等人将单层石墨烯直接转移到蓝光LED P-GaN层上作为透明导电层,经过实验分析可知, 虽然将石墨烯直接作为透明导电层可显著提高LED发光效率,但是由于石墨烯与P-GaN层功函数不匹配,无法形成良好的欧姆接触,从而导致石墨烯LED会有较高的开启电压[5]。

    为了克服石墨烯与P-GaN层因功函数差无法形成良好欧姆接触的问题,许多科研工作者提出在石墨烯与P-GaN层之间插入一层同时能够和石墨烯、P-GaN形成良好欧姆接触的材料,其中ITO薄层是较多人的选择[6-8]。研究发现, 通过插入ITO层不仅显著降低了LED的开启电压, 还保持了石墨烯LED高光功率输出。但是上述研究只适用于蓝光LED,因为如果将ITO薄层作为紫外LED的缓冲层,则不得不面对ITO对紫外光的高吸收率[9],高吸收效率势必会影响紫外LED光提取效率(light extraction efficiency, LEE),从而降低LED光功率。而现今紫外LED在照明、消毒、通信当中都具有重要的应用价值,因此提高石墨烯紫外LED的LEE,对于将来紫外LED的应用具有重要意义[10-13]。

    为了改变因为ITO的高吸收率导致石墨烯紫外LED低发光效率的问题,作者提出利用不同ITO微纳结构(矩形和等腰三角形)作为石墨烯和P-GaN层之间的插入层,分析不同的ITO微纳结构对紫外石墨LED光提取效率的影响,从而找出最优的ITO微纳结构[14]。

    本文中首先分析了ITO薄层厚度对紫外LED的LEE的影响, 其次分析ITO不同微纳结构参量对紫外LED的LEE的影响。经过对比发现, 利用ITO矩形微纳结构作为石墨烯紫外LED插入层相比于ITO薄层作为插入层,其LEE提高了45.06%, 但是三角微纳结构在亚波长范围内并不能提高石墨烯紫外LED的LEE,反而低于ITO薄层石墨烯紫外LED的LEE。

1.   ITO薄层石墨烯LED光提取效率
  • 本文中的ITO薄层石墨烯紫外LED基本结构主要源自参考文献[15],它由蓝宝石衬底、无掺杂u-GaN层(2μm)、N型掺杂N-GaN层(1.5μm)、5对Al0.08Ga0.92N/In0.04Ga0.96N构成的多量子阱(multiple quantum wells, MQWs),其中心波长λ=380nm、P型掺杂P-GaN层(0.1μm)、ITO薄层(厚度为hi)、石墨烯和金属电极构成,具体如图 1所示。GaN材料对不同波长的折射率由参考文献[16]中获得,其在波长380nm时的折射率为2.74+0.18i,ITO对不同波长的折射率参量可由参考文献[17]中获得。

    Figure 1.  ITO thin layer graphene UV LED

    为了研究ITO薄层对紫外石墨烯LED的LEE的影响,利用时域有限差分法[17]计算了当石墨烯层数为1时,不同ITO厚度hi下紫外LED的LEE的变化趋势,具体如图 2所示。从图中可以看到, 随着hi的增加,存在一个使紫外LED的LEE达到最佳的hi。此外,从图中可知有无石墨烯层对紫外LED的LEE也会产生影响,具有石墨烯层的紫外LED的LEE会略小于无石墨烯层的紫外LED。这主要是因为当石墨烯铺在ITO薄层上,会使整体透射率下降,从而降低了紫外LED的光提取效率,具体如图 3所示。图 3是计算了包含P-GaN层、ITO薄层(40nm)、石墨烯(0层或者1层)的透射率,从图中可知,P-GaN层和ITO薄层组合的透射率要略高于P-GaN层、ITO薄层和石墨烯组合,故此会使有石墨烯层的紫外LED的LEE略低于无石墨烯层对紫外LED。虽然有石墨烯层的紫外LED的LEE会略降低,但是由于石墨烯有高电子迁移率特点,因此它相比仅有ITO作为透明导电层的紫外LED电流会分布更均匀,不会出现电流拥挤效应。因此, 最终石墨烯紫外LED的光功率会比无石墨烯的紫外LED高[4-5]。

    Figure 2.  LEE of UV LED at different hi

    Figure 3.  The influence of graphene layer on the transmittance of UV LED

    与蓝光LED相比紫外LED的光提取效率要小得多[18-19],石墨烯紫外LED的最大LEE才7.354%(hi=40nm),这主要有3个原因。首先,当波长在蓝光波段,GaN材料消光系数为0,因此GaN材料对蓝光就没有吸收;其次,对于蓝光,GaN材料折射率为2.5,而对于紫外光,GaN材料折射率实部为2.74, 因此GaN材料对于紫外光的临界角要比对蓝光小,这也不利于紫外光从器件中被提取出来;最后,相比于蓝光,ITO对紫外光具有更高的吸收效率[13]。

2.   ITO矩形微纳结构石墨烯LED光提取效率
  • 为了将石墨烯紫外光LED内部更多高阶模提取出来,以此提高石墨烯紫外光LED的LEE,本文中首先将ITO矩形微纳结构替换ITO薄层作为石墨烯与P-GaN层之间的插入层,具体如图 4所示。在图 4中,p为微纳结构周期, s为单个微纳结构宽度, h为微纳结构厚度。

    Figure 4.  ITO rectangular micro nano graphene UV LED

    为了能够让ITO微纳结构更好地提高石墨烯紫外LED的LEE,首先对ITO微纳结构进行优化。经过优化可得: 当h=160nm、占空比f=s/p=0.7, p=220nm时,紫外LED(无石墨烯层)的LEE可以达到最优,最大值为10.912%,相比于无石墨烯的ITO薄层紫外LED提高了45.87%,具体如图 5所示。根据目前的光刻技术工艺,上述的微纳结构完全可以利用电子束光刻和干法刻蚀获得。之所以利用ITO微纳结构能显著提高紫外LED的LEE,主要是因为ITO微纳结构能够将束缚在LED器件内的高阶模提取出来,而对于ITO薄层紫外LED,其提取出的只有低阶模和一小部分高阶模[20-21]。

    Figure 5.  The effect of rectangular micro nano structure on LED LEE

    本文中的LED结构可近似看成3层平面波导,该平面波导由衬底、GaN材料构成的LED、ITO微纳结构组成,它们的折射率分别为n1, n2, n3,其中n2>n1n3。GaN LED的衬底是蓝宝石,因此n1=1.7。ITO微纳结构是一个2维光栅,其折射率n3可由等效介质原理计算得到。因为知道光栅参量和ITO材料折射率,通过计算可知, n3=1.7846。GaN LED整体折射率n2可由GaN材料折射率近似。知道平板波导结构参量后,就可根据参考文献[21]中给出的模式计算公式计算GaN LED内的模式分布。图 6是GaN LED内部某一个高阶模的模式分布。从图 6中可以看到,利用ITO微纳结构作为过渡层的LED,其高阶模有更多的在出光面区域中,这说明相比于利用ITO薄膜作为过渡层,利用ITO微纳结构作为过渡层更能将高阶模提取到出光面。所以利用ITO微纳结构的光提取效率可以达到10.912%,而利用薄膜ITO作为过渡层仅有7.354%。

    Figure 6.  High order mode distribution of GaN LED

    因为ITO微纳结构制备在P-GaN层上,因此有必要分析P-GaN层厚度对石墨烯紫外LED的LEE的影响。通过模拟计算发现,P-GaN层对于LEE存在最优厚度,具体如图 7所示。从图 7中可知,当P-GaN层厚度为100nm时,石墨烯紫外LED的LEE最大,而当P-GaN层厚度增加或者减小,其LEE均会下降。因此在制备LED时,应该精确控制P-GaN层厚度,以保证LED高效率工作。

    Figure 7.  The influence of P-GaN layer thickness on LEE

3.   ITO三角形微纳结构石墨烯LED光提取效率
  • 图 8是三角ITO微纳结构石墨烯紫外LED,它利用三角ITO微纳结构作为石墨烯紫外LED缓冲,pt, st, ht分别是ITO三角微纳结构的周期、条宽、厚度。通过对ITO三角微纳结构的优化,发现当pt =300nm, ft=0.8, ht=250nm时, 石墨烯紫外LED光提取效率最高,最高可达6.64%,具体如图 9所示。通过图 9可以发现, ITO三角微纳结构并不能显著提高石墨烯紫外LED的LEE,其LEE明显低于利用ITO薄层作为缓冲层的石墨烯紫外LED。之所以ITO三角微纳结构不能显著提高石墨烯紫外LED的LEE,是因为光经过三角微纳结构后全部被内反射进LED器件内部,无法从出光面逸出,这就导致ITO三角微纳石墨烯紫外LED的LEE反而低于ITO薄层石墨烯紫外LED的LEE。

    Figure 8.  ITO triangle micro nano graphene UV LED

    Figure 9.  The effect of triangle micro nano structure on LED LEE

4.   石墨烯层数对石墨烯LED光提取效率影响
  • 石墨烯层数对石墨烯LED光提取效率影响在获得最佳ITO微纳结构参量后,本文中分析了石墨烯层数对紫外LED的LEE影响(以矩形ITO微纳结构为例)。经过数值计算后发现,随着石墨烯层数的增加,石墨烯紫外LED的LEE会逐渐下降,但是幅度不大,具有3层石墨烯的紫外LED的LEE相比于仅有ITO微纳结构的紫外LED仅下降了5.22%,具体如图 10所示。从图中可知,当只有一层石墨烯的紫外LED的LEE可以达到10.668%,相比于只有一层石墨烯使用ITO薄层作为插入层的紫外LED提高了45.06%。之所以具有多层石墨烯紫外LED的LEE相比于无石墨烯层的紫外LED要小,但是相差又不大,这是因为石墨烯层数的增加会使P-GaN与ITO微纳结构组合结构的透射率逐渐下降,但是随着石墨烯层数的增加,组合结构的透射率下降幅度较小,具体如图 11所示。

    Figure 10.  The effect of graphene layer number on LED LEE

    Figure 11.  The effect of graphene layers on the transmittance of light output surface

5.   结论
  • 为了能够提高ITO材料作为插入层的石墨烯紫外LED的LEE,本文中提出利用不同ITO微纳结构作为石墨烯和P-GaN层之间的插入层。经过对微纳结构的优化,当h=160nm, f=0.7, p=220nm时,ITO矩形微纳结构插入石墨烯(单层)紫外LED的LEE可达10.668%,相比于最优的薄层ITO石墨烯(单层)紫外LED提高了45.06%。对于ITO矩形微纳结构, 当pt=300nm, ft=0.8, ht=250nm时,石墨烯(单层)紫外LED的LEE仅有6.64%。另外,经过分析发现, 随着石墨烯层数的增加,ITO微纳结构石墨烯紫外LED的LEE会逐渐下降,但是幅度不大,当石墨烯层数为3层时,其LEE相比于无石墨烯层的紫外LED仅下降了5.22%。

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return