Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 45 Issue 2
Mar.  2021
Article Contents
Turn off MathJax

Citation:

The relation of harmonic intensity between H2+ and D2+ with wavelength

  • Corresponding author: FENG Liqiang, lqfeng@lnut.edu.cn
  • Received Date: 2020-03-20
    Accepted Date: 2020-05-28
  • In order to understand the relation between the harmonic spectra efficiency of H2+ and its isotope molecule with laser wavelength, the relation between the harmonic intensity of H2+ and D2+ with the wavelength in the range of 600nm~1600nm was theoretically studied by solving 2-D time-dependent Schrdinger equation. It is shown that the intensity of harmonic spectrum is decreased as the wavelength increases. In shorter wavelength region, the decrease rate of harmonic intensity of H2+ is greater than that of D2+. In longer wavelength region, the decrease rate of harmonic intensity of H2+ is smaller than that of D2+. Furthermore, driven by lower laser intensity, the harmonic yield of H2+ is always higher than that of D2+. Driven by stronger laser intensity, the harmonic yield of H2+ is lower than that of D2+ in shorter wavelength region; while, it is higher than that of D2+ in longer wavelength region. Theoretical analyses show that the extension of nuclear distance and charge resonance enhanced ionization play the important role in the change of harmonic yield of H2+ and D2+. The results are helpful for molecular harmonic control.
  • 加载中
  • [1]

    L'HUILLIER A, BALCOU P. High-order harmonic generation in rare gases with a 1ps 1053nm laser [J]. Physical Review Letters, 1993, 70 (6): 774-777. doi: 10.1103/PhysRevLett.70.774
    [2]

    LIU H, LI Y, YAO Zh, et al. Chirp pulse control on harmonic cutoff and harmonic intensity [J]. Laser Technology, 2017, 41(5): 708-711 (in Chinese).
    [3]

    LI L, ZHENG M, FENG R L, et al. Waveform control in generations of intense water window attosecond pulses via multi-color combined field[J]. International Journal of Modern Physics, 2019, B33(13): 1950130.
    [4]

    FENG L Q, CHU T S. Nuclear signatures on the molecular harmonic emission and the attosecond pulse generation [J]. The Journal of Chemical Physics, 2012, 136(5): 054102. doi: 10.1063/1.3681165
    [5]

    LI Y, FENG R L Q, QIAO Y. Improvement of harmonic spectra from superposition of initial state driven by homogeneous and inhomogeneous combined field [J]. Canadian Journal of Physics, 2020, 98(1): 198-209.
    [6]

    FENG L Q, LI Y, LIU H. High intensity attosecond pulse generation by the improved multi-cycle polarization gating technology [J]. Laser Technology, 2018, 42(4): 451-456 (in Chinese).
    [7]

    FENG L Q, CHU T S. Generation of an isolated sub-40as pulse using two-color laser pulses: Combined chirp effects [J]. Physical Review, 2011, A84(5): 053853.
    [8]

    LI Y, FENG L Q, QIAO Y. Selective enhancement of single-order and two-order harmonics from He atom via two-color and three-color laser fields [J]. Chemical Physics, 2019, 527: 110497. doi: 10.1016/j.chemphys.2019.110497
    [9]

    CORKUM P B. Plasma perspective on strong field multiphoton ionization [J]. Physical Review Letters, 1993, 71(13): 1994-1997. doi: 10.1103/PhysRevLett.71.1994
    [10]

    LIU H, FENG L Q. Mid-infrared field phase measurement and attosecond pulse generation [J]. Laser Technology, 2017, 41(2): 151-158 (in Chinese).
    [11]

    TATE J, AUGUSTE T, MULLER H G, et al. Scaling of wave-packet dynamics in an intense midinfrared field [J]. Physical Review Letters, 2007, 98(1): 013901. doi: 10.1103/PhysRevLett.98.013901
    [12]

    LEWENSTEIN M, BALCOU P, IVANOV M Y, et al. Theory of high-harmonic generation by low-frequency laser fields [J]. Physical Review, 1994, A49(3): 2117-2132.
    [13]

    LAN P, TAKAHASHI E J, MIDORIKAWA K. Wavelength scaling of efficient high-order harmonic generation by two-color infrared laser fields [J]. Physical Review, 2010, A81(6): 061802.
    [14]

    DU H, XUE S, WANG H, et al. Wavelength scaling of high-order harmonic yield from a Rydberg atom in a few-cycle pulse [J]. Journal of the Optical Society of America, 2014, B31(7): 1621-1626.
    [15]

    MIAO X Y, ZHANG C P. Manipulation of the recombination channels and isolated attosecond pulse generation from HeH2+ with multicycle combined field [J]. Laser Physics Letters, 2014, 11(11): 115301. doi: 10.1088/1612-2011/11/11/115301
    [16]

    FENG L Q, LI W L, LIU H. Laser phase effect on asymmetric harmonic distribution in H2+ [J]. Chinese Physics, 2017, B26(4): 044206.
    [17]

    TELNOV D A, HESLAR J, CHU S I. High-order-harmonic generation of vibrating H2+ and D2+ [J]. Physical Review, 2017, A95(4): 043425.
    [18]

    LIU H, LI W L, FENG L Q. Chirp control of multi-photon resonance ionization and charge resonance enhanced ionization on molecular harmonic generation[J]. Chemical Physics Letters, 2017, 676(7): 118-123.
    [19]

    LU R F, ZHANG P Y, HAN K L. Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields [J]. Physical Review, 2008, E77(6): 066701.
    [20]

    FENG L Q. Molecular harmonic extension and enhancement from H2+ ions in the presence of spatially inhomogeneous fields [J]. Physical Review, 2015, A92(5): 053832.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article views(5822) PDF downloads(18) Cited by()

Proportional views

The relation of harmonic intensity between H2+ and D2+ with wavelength

    Corresponding author: FENG Liqiang, lqfeng@lnut.edu.cn
  • College of Science, Liaoning University of Technology, Jinzhou 121001, China

Abstract: In order to understand the relation between the harmonic spectra efficiency of H2+ and its isotope molecule with laser wavelength, the relation between the harmonic intensity of H2+ and D2+ with the wavelength in the range of 600nm~1600nm was theoretically studied by solving 2-D time-dependent Schrdinger equation. It is shown that the intensity of harmonic spectrum is decreased as the wavelength increases. In shorter wavelength region, the decrease rate of harmonic intensity of H2+ is greater than that of D2+. In longer wavelength region, the decrease rate of harmonic intensity of H2+ is smaller than that of D2+. Furthermore, driven by lower laser intensity, the harmonic yield of H2+ is always higher than that of D2+. Driven by stronger laser intensity, the harmonic yield of H2+ is lower than that of D2+ in shorter wavelength region; while, it is higher than that of D2+ in longer wavelength region. Theoretical analyses show that the extension of nuclear distance and charge resonance enhanced ionization play the important role in the change of harmonic yield of H2+ and D2+. The results are helpful for molecular harmonic control.

引言
  • 当强激光场与原子、分子相互作用时会发生许多强场现象。高次谐波是其中一个最为重要的现象[1], 它为获得极紫外光源和阿秒脉冲提供了一种有效的方法[2]。因为光谱连续区越宽, 获得的阿秒光源就会越短, 因此,近20年时间里,延伸谐波截止能量获得了广泛关注[3-8]

    基于半经典三步模型理论,即“电离-加速-回碰”[9],谐波截止能量在Ip+3.17Up处(Ip是电离能;Up=I/4ω2是自由电子在激光驱动下获得的动能,Iω分别为光强和激光频率)。由此可见,利用长波长激光可以有效延伸谐波截止能量,例如中红外激光场[10]。但是,非常遗憾的是,研究表明谐波辐射效率会随着激光波长增大而减小。一般来说,普遍接受的光谱强度随波长的变化规律为λ-5~λ-6(λ为激光波长)[11]。这里主要由2点组成:(1)电子在3维空间中运动,则光谱强度随波长增大会有λ-3的减小趋势[12];(2)谐波截止能量与波长存在Ecλ2的关系,这会导致谐波辐射效率与波长额外的λ-2的关系[9]。因此,如何在长波长区间减缓谐波辐射效率的减小得到了广泛关注。例如:LAN等人提出利用双色场调控可以有效减缓谐波效率的衰弱[13]; DU等人提出利用里德堡态也可以起到相似的作用[14]

    虽然谐波效率与激光波长的关系已经有所报道[11],但是,选取的体系多为原子,对于H2+及其同位素分子谐波强度与激光波长的关系却少有报道。众所周知,H2+及其同位素分子谐波光谱相比于原子谐波光谱具有更多的结构和特点。例如:双原子核所导致的谐波辐射的多通道效应[15],以及谐波辐射的空间分布效应[16]; 同位素效应对谐波光谱的影响[17]; 核间距延伸所导致的3种电离及谐波辐射机制[18],即直接电离、电荷共振增强电离和解离态电离。因此,研究H2+及其同位素分子谐波强度与激光波长的关系可以更深层次了解分子谐波光谱的特点。鉴于此,作者选取600nm~1600nm激光波长,研究了H2+和D2+谐波强度与波长之间的变化关系, 并给出物理机制分析。

1.   计算方法
  • 考虑最简单的H2+(或D2+)模型,即核运动、电子运动及激光偏振都在同一方向。此时,体系的薛定谔方程为[19]:

    式中, t为激光的作用时间,Rz为核与电子的坐标,V(z, R)为势能项,ψ(z, R, t)为体系波函数,mj=Hmj=D为H和D的核质量。激光场E(t)为:

    式中, E为激光振幅,ωλ为激光频率,λ表示对应波长,τ为激光半峰全宽且τ=20fs。高次谐波谱图可表示为:

    式中, 。

    本文中谐波辐射强度定义为谐波截止附近20阶谐波强度的平均值。

2.   结果与分析
  • 图 1a中给出了H2+与D2+谐波强度随波长的变化的关系。激光波长从600nm变换到1600nm, 激光强度为I=3×1014W/cm2(定义为弱光强情况)。谐波效率随着波长增大而减小,并且H2+谐波强度高于D2+。具体来说,在短波长区域(600nm < λ < 1000nm),H2+谐波强度与波长关系为λ-6.32,其强度要比D2+λ-5.45下降得更快,而在长波长区域(1100nm < λ < 1600nm),H2+谐波强度与波长关系为λ-6.61,其强度减小趋势要比D2+λ-7.23缓慢。图 1b中同样给出了H2+与D2+谐波强度随波长的变化的关系。激光强度为I=6×1014W/cm2(定义为强光强情况)。同样,在短波长区域(600nm < λ < 900nm),H2+(λ-5.21)光谱强度减小趋势要快于D2+(λ-4.62); 在长波长区域(1000nm < λ < 1600nm),H2+(λ-7.63)光谱强度减小的趋势要慢于D2+(λ-7.91)。但是,在短波长区域,H2+光谱强度小于D2+;而在长波长区域H2+光谱强度却略大于D2+

    Figure 1.  Wavelength dependence of harmonic efficiency of H2+ and D2+

    为了解释谐波强度随波长的变化关系,图 2图 3中给出了H2+和D2+在不同激光驱动下谐波辐射时频分析及核间距变化[20]。这里只选取800nm(短波长区域)和1600nm(长波长区域)情况进行分析。首先,在800nm弱光强驱动下(见图 2),H2+谐波辐射过程具有较多的能量峰。对于本文中选用的谐波强度定义区域,谐波光谱主要由能量峰A~F组成;并且,能量峰A~F具有较强的强度,如图 2a所示。在1600nm激光驱动下,谐波强度定义区域只由能量峰AB组成, 并且其强度明显小于800nm激光场的情况,如图 2b所示。由此可见,谐波能量峰数量和强度的减少是谐波光谱强度随波长增大而减小的原因。对于D2+分子,在800nm和1600nm激光驱动下,谐波光谱区域依然由6个和2个能量峰组成,如图 2c图 2d所示。但是,其辐射强度要小于H2+情况,因此,在弱光强下H2+谐波强度大于D2+。为何H2+谐波辐射强度在短波长区域下降速度要快于D2+, 而在长波长区域又慢于D2+。分析核间距变化可知,在短波长区域(例如800nm场情况),H2+核间距在能量峰A~F区域可以由3.8a.u.延伸到6.0a.u.(本文中a.u.表示原子单位,未专门标注的表示任意单位), 如图 2a所示。这一区间正好位于电荷共振增强区域,因此导致能量峰A~F具有较强强度。随着波长增大,有效能量峰数量减小,并且在能量峰区域最大核间距延伸由6.0a.u.减小到5.0a.u., 这导致有效能量峰强度变化明显。对于D2+分子,由于较慢的核运动速度,其核间距在能量峰A~F区域只由3.4a.u.延伸到4.2a.u.,如图 2c所示。并且,随着波长增大,有效能量峰区域最大核间距延伸只由4.2a.u.减小到4.0a.u.,因此,D2+有效能量峰强度变化小于H2+。这是短长波区域H2+谐波辐射强度下降速度快于D2+的原因。在长波长区域,H2+最大核间距在有效能量峰区域可以由5.4a.u.变化到4.3a.u.。例如,1600nm场情况,其核间距在能量峰AB区域为3.8a.u.~4.3a.u.,如图 2b所示。虽然核间距减小导致谐波辐射强度减弱,但H2+依然处在电荷共振增强电离区域。对于D2+分子,由于较慢的核运动速度,最大核间距变化在有效能量峰区域仅为3.7a.u.~4.0a.u.。例如,1600nm场情况,其核间距在能量峰AB区域为3.4a.u.~3.7a.u.,如图 2d所示。显然,对于D2+分子而言,在长波长区域其电离过程未进入电荷共振增强电离区域,因此导致谐波能量峰强度明显下降。这是长波长区域D2+谐波辐射强度下降速度快于H2+的原因。图中,左纵坐标为谐波阶次ω/ω800ω/ω1600;右纵坐标R(t)表示随时间变化的核间距, 用点虚线表示。

    Figure 2.  The time-dependent nuclear distances and time-frequency analyses of harmonics driven by lower intensity

    在强光强驱动下(见图 3),谐波辐射强度随波长增大而减小的原因依然如图 2所示,即波长增大导致谐波辐射能量峰强度及数量减少是造成谐波辐射强度随波长增大而减小的原因。这里不再过多描述。强光强下主要考虑一点,即为何H2+谐波效率在短波长区域小于D2+;而在长波长区域又大于D2+。首先分析短波长区域,例如在800nm激光驱动下,本文中定义的谐波强度范围依然由能量峰A~F组成,如图 3a图 3b所示。对于H2+分子,能量峰A~D具有较强强度,而E和F强度较弱,如图 3a所示。对于D2+分子,能量峰A~F都具有较强强度,如图 3b所示。因此,在短波长区域可观测到D2+谐波强度大于H2+。分析核间距变化可知,H2+核间距在能量峰A~D区域由3.8a.u.增大到6.0a.u.;而在EF区域其继续延伸到7.5a.u.。这说明H2+在能量峰A~D区域处于电荷共振增强电离区域;而在EF区域逐渐延伸出共振电离区域,因此导致能量峰A~D具有高强度, 能量峰EF强度降低。对于D2+分子,其核间距在能量峰A~F区域由3.7a.u.延伸到5.8a.u.。这说明D2+在能量峰A~F区域一直处于电荷共振增强电离区域,因此导致能量峰A~F都具有高强度。接下来,在长波长区域,例如在1600nm激光驱动下,谐波光谱范围依然由能量峰AB组成,如图 3c图 3d所示。对于H2+分子,其核间距在能量峰AB区域可由4.0a.u.增大到4.5a.u.,即H2+在此时间段处于共振电离区域,因此能量峰AB具有略高的强度,如图 3c所示。对于D2+分子,其核间距在能量峰AB区域仅由3.7a.u.增大到4.2a.u.,即D2+在此时间段电离时只有后半段处于共振电离区域,因此能量峰AB强度略低,如图 3d所示。这是H2+谐波强度在长波长区域大于D2+的原因。

    Figure 3.  The time-dependent nuclear distances and time-frequency analyses of harmonics driven by stronger intensity

3.   结论
  • 理论研究了H2+和D2+谐波光谱强度随波长的变化关系。结果表明,在弱光强下,H2+谐波强度在短波长区域为λ-6.32,其强度要比D2+λ-5.45下降得更快。而在长波长区域,H2+谐波强度与波长关系为λ-6.61,其强度减小趋势要比D2+λ-7.23缓慢, 并且在弱光强驱动下,H2+谐波强度始终大于D2+。在强光强下,H2+谐波强度在短波长区域为λ-5.21,光谱强度减小的趋势要大于D2+λ-4.62。在长波长区域,H2+光谱强度与波长关系为λ-7.63,其强度减小趋势要小于D2+λ-7.91, 并且在短波长区域,H2+光谱强度小于D2+;而其在长波长区域却略大于D2+。后续的分析表明,分子核间距的延伸及电荷共振增强电离是导致H2+和D2+谐波强度变化的原因。本文中的研究结果可为调控分子谐波强度提供实验和理论支撑。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return