Vol.13, No.4

非稳腔几何共轭光线的特征

吕百达 蔡邦维 丘 悦

(四川大学物理系)

摘要:本文使用矩阵光学方法对非稳腔中的基模作了分析,得出了g参数图上各 奏非稳腔共轭物象点的分布规律。

Characteristics of geometrical conjugate rays in unstable resonators

Lu Baida, Cai Bangwei, Qiu Yue (Department of Physics, Sichuan University)

Abstract: In this paper, the fundamental mode in unstable resonators is analysed by using matrix method in optics. The distribution of conjugate object and image points for various unstable resonators on the g-parameter diagram is obtained.

ï

在高功率激光器中,为获得大的模体积和提高横模鉴别力,可采用非稳腔的设计方案 (1~3)。近年来,对非稳腔进行的大量理论和实验研究表明,虽然非稳腔的横模具有比较复杂 的结构,但当腔的有效菲涅尔数足够大时,它的基模趋近于几何光学均匀球面波(特殊情况 下可为平面波)近似下的计算结果^[3]。因此,常用简单的几何成象法进行分析,教科书中 (例如文献[4])对此作了详细的介绍。但使用这一方法时,需对不同腔型分别写出成象公 式进行计算,符号法则也比较复杂。本文采用矩阵光学方法分析非稳腔的基模特征,深入研 究几何共轭光线物象点位置的分布规律,并以双凹型非稳腔为例给出证明。所用方法和有关 结果不仅对简单非稳腔的设计有参考意义,而且可以推广用于多元件非稳腔。

矩阵方法的要点由文献〔5〕给出。取非稳腔的特征参数为球面波的曲率半径r(对应于稳 定腔的复参数q),由ABCD定律出发,利用在腔反射镜S,处本征球面波曲率半径r,应满足的往 返一周自再现条件得到

$$r_{i} = \frac{g_{j}(1-g_{i}) \pm \sqrt{g_{1}g_{2}(g_{1}g_{2}-1)}}{2g_{1}g_{2}-g_{1}-g_{2}}L$$
(1)

或写为 $\frac{1}{r_i} = \frac{g_i - 1}{L} \pm \frac{1}{g_j L} \sqrt{g_1 g_2 (g_1 g_2 - 1)}$ (2)

往 返一周放大率M和能量损耗率Γ分别为

$$M = 2g_1g_2 - 1 \pm 2\sqrt{g_1g_2(g_1g_2 - 1)}$$
(3)

$$\Gamma = 1 - \frac{1}{M^2} \tag{4}$$

式中, $g_i = 1 - \frac{L}{R_i}$ (*i*, *j*=1, 2, *i*≠*j*, 下同) 为光腔g参数, R_i 为镜S_i的曲 率 半 径, L 为

腔长。与文献⁽⁵⁾中(3)式、(6)式不同之处在于,我们已将 r_i , *M*写为较为方便的g参数表示形式。(1)~(3)式中开方前正负号的选取法则是,对正支非稳於($g_1g_2>1$)取 "+",对负支非稳腔($g_1g_2<0$)取"-"。*R*的正负意义为,对四面镜*R*>0,对凸面镜 *R*<0。由非稳腔基模为均匀球面波的物理图象易知,(1)式或(2)式既是镜 S_i 处本征球面波 波面曲率半径的公式,也是几何成象法中以镜 S_i 为参考,球面波共轭物象点 P_i 的位置公式。 与文献⁽⁴⁾不同处是,这里 r_i 正负值的意义统一规定为,当 $r_1>0$ 时, P_1 在镜 S_1 的左方, $r_1<0$ 时, P_1 在镜 S_1 的右方, $r_2>0$ 时, P_2 在镜 S_2 的右方, $r_2<0$ 时, P_2 在镜 S_2 的左方,而与镜 S_i 的类型(曲率半径 R_i 的正负)无关。

二、双凹型非动色的

本节以双凹型非稳腔 (R,>0) 为例、具体说明如何利用基本公式来分析非稳 腔共 轭物, 象点的分布。可分以下几种情况讨论。

1.负支双凹非稳腔
$$R_1 > L, 0 < R_2 < L \quad (g_1g_2 < 0)$$

r₁可用腔参数写为
 $r_1 = \frac{R_2 - L L - \sqrt{L(R_1 - L)(L - R_2)(R_1 + R_2 - L)}}{2L - R_1 - R_2}$ (5)

$$r_{2} = \frac{(R_{1} - L)L - \sqrt{L(R_{1} - L)(L - R_{2})(R_{1} + R_{2} - L)}}{2L - R_{1} - R_{2}}$$
(6)

(1)
$$L < R_1 + R_2 < 2L$$
 by,

$$\boxtimes \qquad \mathbf{r}_1 + L = \frac{-(R_1 - L)L - \sqrt{L(R_1 - L)(L - R_2)(R_1 + R_2 - L)}}{2L - R_1 - R_2} < 0 \tag{7}$$

故
$$r_1 < -L$$
 (8)
因 $R_1 (2L - R_1 - R_2) > 0 成立$,

• 14 •

所以
$$(R_1 - L)L - \sqrt{L(R_1 - L)(L - R_2)(R_1 + R_2 - L)}$$
<0 (9)由此知 $r_2 < 0$ (10)

$$X r_2 + L = \frac{L(L-R_2) - \sqrt{L(R_1-L)(L-R_2)(R_1+R_2-L)}}{2L-R_1-R_2}$$

$$L(L-R_2) - \sqrt{L(R_1-L)(L-R_2)(R_1+R_2-L)} \ge L(L-R_2) -$$

$$\frac{L(L-R_2) + (R_1 - L)(R_1 + R_2 - L)}{2} = \frac{R_1(2L - R_1 - R_2)}{2} > 0$$

所以

故

•

.

$$-L < r_2 < 0 \tag{11}$$

(2)
$$R_1 + R_2 > 2L$$
时,
显然 (5) 式分子、分母均小于0, 故 $r_1 > 0$ (12)
由 $R_2 (2L - R_1 - R_2) < 0$
得 $(R_1 - L) L - \sqrt{L(R_1 - L)(L - R_2)(R_1 + R_2 - L)} > 0$ (13)
故 $r_2 < 0$ (14)
再由 $R_1 (2L - R_1 - R_2) < 0$ (15)
可证 $r_2 + L > 0$ (16)

(3)
$$R_1 + R_2 = 2L$$
 (负支实共焦腔)
由(2)式立即得知,这时一个共轭物(象)点 r_1 位于无穷远处,另一个 $r_3 = -R_1/2$,因此 $-L < r_2 < 0$ (18)

$$r_i$$
可写为 $r_1 = \frac{\sqrt{L(L-R_1)(L-R_2)(L-R_1-R_2)} - (L-R_2)L}{2L-R_1-R_2}$ (19)

$$r_{1} = \frac{\sqrt{L(L-R_{1})(L-R_{2})(L-R_{1}-R_{2})} - (L-R_{1})L}{2L-R_{1}-R_{2}}$$
(20)

$$\boxtimes \sqrt{L(L-R_1)(L-R_2)(L-R_1-R_2)} - (L-R_2)L \leqslant \frac{L(L-R_2) + (L-R_1)(L-R_1-R_2)}{2}$$

$$-(L-R_2)L = -\frac{R_1(2L-R_1-R_2)}{2} < 0$$

$$r_1 < 0$$
(21)

$$X r_1 + L = \frac{\sqrt{L(L-R_1)(L-R_2)(L-R_1-R_2)} + L(L-R_1)}{2L-R_1-R_2} > 0$$

得

得

$$-L < r_1 < 0 \tag{22}$$

(23)

同理由 $\sqrt{L(L-R_1)(L-R_2)(L-R_1-R_2)} - (L-R_1)L \leq \frac{L(L-R_1) + (L-R_2)(L-R_1-R_1)}{2}$

$$-(L-R_1) L = -\frac{R_2(2L-R_1-R_2)}{2} < 0 \qquad \text{ft} \quad r_2 + L > 0$$
$$-L < r_2 < 0$$

按前述符号规则,由(8)、(11)、(12)、(17)、(18)、(22)、(23)式可决 定共轭物象点P₁、P₂位于腔内或腔外。镜S₁的曲率中心O₁与共轭点P₁的相对位置亦能用 同样方法确定。于是,使用光线追迹方法易作出各类双凹型非稳腔几何共**轭光线**示意图1。

图1 双凹型非稳腔及几何共轭光线图 (A) $R_1 > L$, $0 < R_2 < L$, $L < R_1 + R_2 < 2L$ (B) $R_1 > L$, $0 < R_2 < L$, $R_1 + R_2 > 2L$ (C) $R_1 > L$, $R_1 + R_2 = 2L$ (D) $0 < R_1 + R_2 < L$

• 16 •

按上述方法,可分别对(1) 双凸型, (2)凸凹型, (3)平凸型和(4)平凹型 非稳腔共轭物象点的分布规律进行分析。为节省篇幅,略去有关推导过程,将所得结果总结于图2之中。

1.本文使用矩阵光学方法对非稳腔中的几何共轭光线作了讨论。得出了各类非稳腔共轭 物象点位置分布规律(图2)。与几何成象法比较,矩阵方法的优点是可用统一的方法即ABCD 矩阵和特 征参数的自 再 现 条件分析各类非稳腔的基模特征。所得公式符号法则简明,易于 掌握。当r.>0或r.<-L时,共轭物(象)点在腔外,-L<r.<0时,共轭点在腔内。在非稳 腔的设计中,注意到这些规律是有意义的。例如,腔内的共轭点将形成光线的会聚和发散中 心,特别是在激活介质和光学元件处或其附近的共轭点更为有害,是应当尽量避免的。

2.在高功率泵浦下,激光介质可等效为一热透镜,因此高功率激光系统使用腔型常常是 多元件腔,非稳腔也不例外。尽管对简单二元件非稳腔可通过腔型选择(例如采用双凸腔、 平凸腔或虚共焦型非稳腔等,详见图2)来避免腔内有共轭点存在,但对多元件非稳腔一般却 不可能简单地通过腔型选择来满足这一要求。在这种意义上,研究非稳腔共轭物象点的分布规 律是十分有益的。使用矩阵光学和光线追迹方法,本文有关结果亦可推广用于多元件非稳腔。

Vol.13, No.4

激光倍频器件定向方法

黄祥金 黄亦好 熊克明

(中国科学院福建物质结构研究所)

摘要:用偏光显微镜解决了X射线技术确定倍频器件取向的困难。把这二种方法结合起来可以圆满地解决定向问题。

Orientation determination methods for frequency doubled devices

Huang Xiangjin, Huang Yihao, Xiong Keming (Fujian Institute of Material Structure, Academia Sinica)

Abstract: The difficulty in the determination of the orientation in frequency doubled devices by X-ray technique has been solved by using the polarization microscope. Thus, the determination of the orientation of sheet crystals can be satisfactorily settled by the combination of these two methods.

前盲

单轴晶体作 I 类或 I 类激光倍频器件,与φ有关的有:四方晶系有φ=0°和φ=45°两种, 三方晶系或六方晶系有φ=0°和φ=30°两种^[1]。从X射线定向技术出发,就是确定[h00]

参考文献

- (1) Appl.Opt., 1974, Vol.13, No.2, P.353.
- (2) IEEE J.Q.E., 1987, QE-23, No.2, P.229.
- (3) Laser Handbook, North-Holland, 1979, Vol.3, P.5.
- 〔4〕 周炳琨等编,《激光原理》,国防工业出版社,1980年,第371页。
- (6) IEEE J.Q.E., 1976, QE-12, No.1, P.35.

作者简介: 吕百达, 见本刊1987年第11卷第4期第33页。

- 蔡邦维,见本刊1987年第11卷第5期第14页。

丘 悦,男,1965年12月出生。现为四川大学物理系88级光学专业研究生。

收稿日期: 1988年9月19日。

• 18 •