文章编号: 100+3806(2004) 02-0184-02

复合消色差 1/4 波片的再研究

薛 冬,李国华,郝殿中,王 伟(曲阜师范大学 激光研究所,曲阜 273165)

摘要:由出射光与入射光的琼斯矢量变化,用矩阵方法得到了一种计算复合 1/4 波片的消色差能力的理论公式。并用实例说明了其可行性和使用方法。

关键词: 复合 1/4 波片;琼斯矢量;消色差;延迟量 中图分类号: 0439 文献标识码: A

Achromatic analysis of the two-in-one composite 1/4 wave-plate

XUE Dong, LI Guo-hua, HAO Dian-zhong, WANG Wei (Institute of Laser Research, Oufu Normal University, Oufu 273165, China)

Abstract: Through the Jones vector variation of incident light and emergent light, a achromatic theoretical formula for composite wave-plate is deduced. The feasibility of the method and the direction for use are discussed.

Key words: composite 1/4 wave-plate; Jones vector; achromatic; retardation

引 言

通常用的 1/4 波片和 1/2 波片等主要用石英和 云母材料制作, 都是对单一波长而言的, 因其延迟差 由厚度和波长决定, 所以厚度一旦确定, 对其它波长 就不能作 1/4 波片或 1/2 波片使用。对于中心波长 为 λ 设计的波片来说, 其延迟量为^[1]:

 $\delta_0 = 2\pi \Delta n d / \lambda_0 \tag{1}$

式中, △n 是材料的双折射率之差, 3 为波片的厚度, 这种单一波片称非消色差波片, 矩阵光学中的一个 重要法则是: 一连串的双折射器旋光器组成的偏光 系统等效于经过一个双折射器再经过一旋光器, 特 别地, 若旋光器的旋光角为 0, 则一连串的双折射器 可等效于一复合双折射器^[2, 3], 这就是推导复合波 片具体计算公式^[4~8]的理论依据。由上述原理, 设 计了二元、三元复合消色差 1/4 波片, 实验证明有较 好的消色差功能^[1, 9]。随着消色差波片的广泛应 用, 对消色差波片的设计提出了更高的要求, 文中将 对消色差波片从理论深入研究, 并给出比较理想的 计算方法。

E-mail: ghli@ 163169. net

收稿日期: 2003-05-06; 收到修改稿日期: 2003-07-18

.Ⅰ 复合波片理论

理论分析

对于满足一定条件的两任意延迟量的波片构成的二元波片系统,当快轴之间的夹角为一特定值时,以线偏光入射该系统的出射光可以为圆偏光,从而成为一个复合1/4波片^[10]。

设计的复合 1/4 波片由一个 1/2 波片和一个 1/ 4 波片组成, 它将由偏振片出射的线偏振光转化为 圆偏振光。其各波片的相对取向如图 1 所示, 将起 偏器 P 的光轴取在 y 轴, 与延迟器 T₁ 的快轴方向成 θ 角, 波片 T₁ 片和 T₂ 的快轴夹角为 α_{o}

Fig. 1 The orientation of wave-plates

入射光通过起偏器 P 产生线偏光, 起偏器的琼

斯矩阵为: $P = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 。 波片的矩阵分别为:

作者简介: 薛 冬(1975), 男, 博士研究生, 主要从事偏 光技术的研究。

$$\boldsymbol{T}(\delta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\delta} \end{bmatrix}$$
(2)

坐标旋转矩阵为:

$$\boldsymbol{R}(\theta) = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
(3)

取 $\delta_{1}=\pi$, $\delta_{2}=\pi/2$, $\alpha=\pi/3$, $\theta=\pi/12$, 这时复合波 片系统(含起偏器)的琼斯矩阵为:

$$M = T(\delta_2) R(-\alpha) T(\delta_1) R(-\theta) P = \begin{bmatrix} 0 & -\sin\theta\cos\alpha - \cos\theta\sin\alpha\exp(i\delta_1) \\ 0 & \cos\theta\cos\alpha\exp(i\delta_1 + i\delta_2) - \sin\theta\sin\alpha\exp(i\delta_2) \end{bmatrix} = \\ \frac{\sqrt{2}}{2} \begin{bmatrix} 0 & 1 \\ 0 & i \end{bmatrix}$$
(4)

很容易看出,这时出射光为沿z方向传播的入射光 在x, y方向的分量分别为 E_x , E_y (入射光为自然光 时可看作 $E_x = E_y = 1$),出射光为 E_x' , E_y' ,则有:

$$\begin{bmatrix} E_{x}'\\ E_{y}' \end{bmatrix} = M \begin{bmatrix} E_{x}\\ E_{y} \end{bmatrix} = \frac{\sqrt{2}}{2} \begin{bmatrix} 0 & 1\\ 0 & i \end{bmatrix} \begin{bmatrix} E_{x}\\ E_{y} \end{bmatrix} = \frac{\sqrt{2}}{2} E_{y} \begin{bmatrix} 1\\ i \end{bmatrix}$$
(5)

这时, $E_y' / E_x' = i$, 即出射光为圆偏振光。 1.2 消色差理论

上面是对于中心波长 λ_0 的理想情况, 由(1) 式 可知, 当波长为 λ_i 的光通过这块延迟器的延迟量不 再为 $\pi/2$, 而是有一个微小的改变, $\delta_1 \neq 2\pi \Delta n d / \lambda_i =$ $\delta_0 + \Delta \delta_i$ 对于同一波长 λ_1 , 波片的厚度越大, 产生的 变化量 $\Delta \delta$ 越大, 它们之间是正比关系。由(2) 式 知, 对于 λ_i 该波片的矩阵为:

$$\boldsymbol{T}(\delta) = \begin{bmatrix} 1 & 0\\ 0 & e^{i\delta + i\Delta\delta} \end{bmatrix}$$
(6)

对于 1/4 波片:

$$\boldsymbol{T}(\pi/2) = \begin{bmatrix} 1 & 0 \\ 0 & e^{\pi/2 + i\Delta\delta} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & ie^{i\Delta\delta} \end{bmatrix}$$
(7)

由欧拉公式, exp(ix) = $\cos x$ + $i \sin x$, 及当 θ 很小时 有 $\cos \theta \approx 1$, $\sin \theta \approx \theta$, (7) 式近似为:

$$\boldsymbol{T}(\boldsymbol{\pi}/2) \approx \begin{bmatrix} 1 & 0\\ 0 & 1 + i\Delta\delta \end{bmatrix}$$
(8)

如果以波长为 λ 的光入射该延迟器, 出射光将是椭圆偏振光, $E_y'/E_x' = i + \Delta\delta$, 不再是一个纯虚数, 虚部 i 说明它是一个 1/4 波片, 实部 $\Delta\delta$ 说明其偏离正常值的大小。对于同一波长的入射光, 如果经过某一复合波片后 $E_y'/E_x' = i + \Delta\delta r$, 而 $\Delta\delta r < \Delta\delta$, 则说

明经过复合波片而偏离 π/2 较小,也就说明对于这 一波长,复合波片相对单一波片具有较好的消色差 作用。

2 具体应用

在计算复合波片对非中心波长光线的变换作用 时,只要将复合波片用到的 1/4 波片用(8) 式代替, 而 1/2 波片用下式表示:

$$\boldsymbol{T}(\boldsymbol{\pi}) \approx \begin{bmatrix} 1 & 0 \\ 0 & i+2\Delta \boldsymbol{\delta} \end{bmatrix}$$
(9)

上式可依照(6) 式~(8) 式的思想得出, 只是 1/2 波 片的厚度为 1/4 波片的 2 倍, 这对同一非中心波长 而言, 产生的相位变化量也是 2 倍关系。这样将修 正后的(8) 式、(9) 式两式代入(4) 式、(5) 式, 便容易 得到: $E'_{y} / E'_{x} = i + \Delta\delta_{F}$ 、直接解析比较 $\Delta\delta_{F} 与 \Delta\delta$ 是较困难的。利用计算机进行赋值计算, 取不同 $\Delta\delta$, 然后将运算后得到的 $\Delta\delta_{F}$ 与之相比, 就可以看 到该复合波片在不同波长范围内的消色差的能力。 下面是机算得到的结果(见表 1)。

$\mathcal{N}_{\mathcal{I}}$	single plate(∆δ)	0.02	0.04	0.06	0.08	0.1	0.2	
(p	dual plate($\Delta \delta_F$)	1E-5	9E-5	3E-4	7E-4	1. 3E-3	1E-2	

可以看到, $\Delta \delta_F$ 比 $\Delta \delta$ 要小得多, 说明这种二元 复合波片, 具有良好的消色差性能。

同样原理可以推导多元复合波片,下面直接给 出三元复合 1/4 波片^[9]的理论计算结果(见表 2)。

Table 2 The retardation of single wave-plate and three element plate

single plate (Δδ)	0.02	0.04	0. 06	0.08	0.1	0.2
$\begin{array}{l} t hree \ element \\ plate(\ \Delta \ \delta_F) \end{array}$	8. 3E-3	1.7E-2	2.5E-2	3.2 № 2	4E-2	8E-2

从表 2 可以看出, 云茂金等^[9]所设计的三元复合波 片也有相当好的消色差能力, 但从理论分析, 不如前 面二元复合波片的消色差性能好。

3 讨 论

 $\Delta \delta \exists E_{y}' / E_{x}'$ 实部与虚部之比, 能反映出射光 的相位关系, 由上面理论得知也能反映器件的消色 差能力。 $\Delta \delta = 0$ 时其实是没有相位偏离, 是对应于 中心波长 λ_{0} 的情况, $\Delta \delta = 1$, 说明 E_{y}' 比 E_{x}' 超前了 $\pi/4($ 这是由 E_{y}' / E_{x}' 的复角看出的), 对应于偏离中 (下转第 192 页) (9)

$$\frac{8\pi A}{\lambda} \sin \frac{\theta}{2} = 2\pi \cdot N \tag{8}$$

由此得:

$$A = N \cdot \frac{\lambda}{4\sin(\theta/2)}$$

可见,由调相波波形图读出两相邻疏区间的信号变化的周期数N,就可以算出振动物体的振幅A。此 外,由(2)式、(3)式、(5)式分析,不难得出激励电压 与信号波形的对应变化关系,如图 2b 所示。

由(9) 式分析可得此方法的理论精度应为 $\frac{\lambda}{4\sin(\theta/2)}$ 。若 λ = 650nm, θ = 23,则其精度约为 0. 84m。如果对信号进行滤波、细分或频谱分析等 处理,则振幅测量精度可以达到0. 14m。

3 实验结果

利用以上设计的差动式检波系统和丹麦生产的 振动台(Brel & Kj2(BK) sine random generator type1027, power amplifier type2706) 进行频率、振幅的 模拟比对测试,每一振幅和频率均测 10 次,取平均 值并将数据列于表 1 中。

Table 1 Data of frequency and amplitude of the differential demodulation system

No.	freque	ncy/Hz	amplitude/µm			
	comparative value	measurem ent value	comparative value	measurement value		
1	0.5	0.5	4998.00	4973.25		
2	5	5	3500.30	3482.30		
3	10	10	2000. 00	2017.72		
4	20	19.9	1540.60	1526.83		
5	30	30.1	720.00	726.40		
6	50	50.3	270. 20	271.43		
7	80	80.0	110.20	109.31		

(上接第185页)

心波长较大的情况。对于同一个 $\Delta\delta($ 对应同一波 长), 若 $\Delta\delta_{\rm F} < \Delta\delta$, 说明该复合波片具有消色差作 用, $\Delta\delta_{\rm F}$ 越小, 说明该复合波片的消色差能力越强。

参考文献

- [1] 苏美开,李国华,宋连科. 激光技术, 1996, 20(1): 29~31.
- [2] 魏光辉. 矩阵光学. 北京: 兵器工业出版社, 1995.156~157.
- [3] 云茂金,李国华,王 美.中国激光,2001,28(9):821~822.

continue							
No.	freque	ncy/Hz	amplitude/µm				
	comparative value	measurement value	comparative value	measurement value			
8	100	100.4	55.50	56.05			
9	200	201.1	42.70	42.53			
10	300	302.1	31.50	31.25			
11	400	400.0	20.30	20. 12			
12	500	498.0	17.40	17.32			
13	600	603.2	14. 20	14.28			
14	700	701.7	10.60	0.67			
15	800	804.2	5.00	4.95			
16	1000	1003.5	4.50	4.47			

由上表可知,本检波系统的频率测量精度为 0.6%,振幅测量精度为1%(事实上,其最小可测振 幅可到 2^µm)。

4 结 论

以上实验结果表明,所设计的激光多普勒差动 式检波系统(使两束高斯光束束腰以较大角度聚焦 在振动体上)的技术指标是令人满意的。如果再对 信号进行整形,改善光学系统及信号处理和计算方 法等则会进一步提高系统的性能,那时,它可用于地 球物理勘探,成为地震勘探中的一种新的高精度、高 分辨力的方法。

参考文献

- [1] 付清锋,周 明.石油仪器, 2000, 14(2): 25~27.
- [2] DRAIN L E. 激光多普勒技术. 北京:清华大学出版社, 1980. 105, 137.
- [3] 周炳琨,高以智,陈家骅.激光原理.北京:国防工业出版社, 1980.345~357.
- [4] 李国华. 激光测量学(第六章, 偏光技术与偏光器件). 北京: 科 学出版社, 1998.223.
- [5] 李国华,苏美开,宋连科.中国激光,1992,19(1):41~42.
- [6] 李国华,苏美开,宋连科.曲阜师范大学学报(自然科学版), 1990,16(3):54.
- [7] SCHIRMER J, SCHMIDI-KALER T. Opt Commun, 2000, 176: 313 ~ 317.
- [8] 魏光辉. 矩阵光学. 北京: 兵器工业出版社, 1995. 172.
- [9] 云茂金,李国华,王 美.光电子激光,2001,12(6):562~563.
- [10] 周 军,程桂建,苏桂英.光电子激光,2001,12(4):368~378.