文章编号: 1001-3806(2006)02-0145-03

激光焊接用超音速横向气帘喷嘴的研究

吴世凯,张正伟,曹 娜,江玉军,肖荣诗

(北京工业大学国家产学研激光技术中心,北京 100022)

摘要:激光焊接过程中,为了保护聚焦镜和保证焊接质量,通常在聚焦镜下布置一横向气帘喷嘴。根据气体动力学 原理设计了一种超音速非对称拉法尔腔体结构的喷嘴,并建立了喷嘴内部拉法尔曲线方程。喷嘴的气流纹影试验表明, 得到的气帘的发散角较小,同时对周围区域的扰动也很小。实际的焊接试验证明这种结构的喷嘴可以有效吹除飞溅,保 护聚焦透镜。

关键词: 激光焊接; 横向气帘; 拉法尔 喷嘴; 纹影试验 中图分类号: TG 456 7 文献标识码: A

Investigation on ultrasonic crossjet for laser welding

WU Shi-kai, ZHANG Zheng-wei, CAO Na, JIANG Yu-jun, XIAO Rong-shi (National Center of Laser Technology, Beijing University of Technology, Beijing 100022, China)

Abstract In haser beam welding an appropriate crossjet nozzle should be mounted under the welding head in order to protect the optics from the welding spatter and smoke An ultrasonic crossjet with a non-symmetric Laval cavity is designed based on the aerodynamic theory. Schleren trial show that a rigid flow with a small divergence is obtained, and no disturbing near the flow can be observed W elding experiments prove that focusing mirror is well protected when such a crossjet is used

Keywords laserwelding crossjet Laval-cavity nozzle, schlierer trial

引 言

激光焊接作为一种高质量、高精度和高速度的先 进焊接方法,目前已被广泛应用于航空航天、汽车制 造、冶金等工业领域。随着激光技术的发展、激光焊接 被称为 21世纪最具发展前景和最有效的连接技术。

在激光焊接过程中产生的飞溅物及其它烟气容易 污染聚焦反射镜。沉积在聚焦反射镜上的金属蒸气和 飞溅微粒,降低了激光器到工件的能量转移效率,并使 激光束产生像差,恶化了激光束的焊接性能。更严重 的可能导致反射镜出现诸如破裂等物理损伤^[1]。为 了保护光学系统元件不受污染,现在比较成熟的方法 是在聚焦镜下方布置一个横吹气帘喷嘴,在焊接过程 中施加一定流速的横向气流将飞溅物吹除。当前使用 的激光焊接横向气帘喷嘴通常采用直管或窄缝形式的 喷嘴结构^[1,2],这种结构的喷嘴喷出的气流速度较低, 容易扩散,不能有效吹除飞溅物,削弱了保护效果。同 时由于气流喷出后形成一个负压区,引起周围空气的 扰动,将空气卷入焊接保护气中,影响焊接质量。

- * 通讯联系人。 E-m ail rsxia@ bjut edu en
- 收稿日期: 2005-01-07; 收到修改稿日期: 2005-03-01

为了避免现有喷嘴结构给激光焊接带来的不利影 响,设计了一种全新腔体结构的喷嘴。由气体动力学 知识可知:当扰动源的运动速度大于声速时,此时扰动 源走在扰动波面之前,所有微弱的波面叠合形成一个 圆锥面,扰动只能在此圆锥面(以 v的速度向前运动的 面)以内传播,此圆锥面以外是不受扰动的区域。此 时的马赫数大于 1,为超音速流^[3],这就是超音速横向 气帘喷嘴设计的理论基础(见图 1)。为此,借鉴拉法 尔喷管的曲线设计了一个喷嘴装置,得到一超音速气 帘,以有效吹除飞溅物,同时还可以控制周围气体的扰 动,保证焊接效果,提高激光焊接质量。

Fig 1 The diagram of ultrasonic flow's transmission(α is acoustical velocity)

拉法尔喷管是先收缩 (收缩到最小处称为喉部) 然后再扩张的管段。拉法尔喷管在设计工况下工作 时,其收缩段上流动参数的变化和收缩形喷管是一样 的,在收缩段的最末,也就是最小断面处 (喉部)达到

作者简介:吴世凯(1976-),男,硕士研究生,现从事耐热 钢激光焊接方面的研究。

声速,然后在扩张段中继续加速到超音速。由于拉法 尔喷管内的流动是恒定等熵的,所以在拉法尔喷管内 未形成激波。

在拉法尔喷管中的收缩段,沿流向过流面积的减 小会使流速不断增大而压强不断减小;在扩张段,沿流 向过流面积的增大使流速不断增大而压强不断减小。 在最小断面处(喉部)马赫数等于 1,随后在扩张段中, 气流膨胀减压加速并形成超音速气流。在超音速情况 下,随着过流面积增加,流速的增大,密度在下降,且密 度的下降比速度的增大还要快,即气体的膨胀程度非 常明显。因此在拉法尔喷管中,气流通过收缩喷管并 在末端(喉部)达到声速,然后再在扩张喷管中继续加 速达到超音速。此时气流的速度较大,可以有效吹除 飞溅物,且对周围的气体扰动也可以大大降低。

2 曲线设计

目前描述拉法尔喷管内部形状曲线的方程尚未见 诸文献资料,喷管结构尺寸的确定主要是以理论计算 为基础并附之于经验设计的简化计算法^[4]。同时为 了得到一个有一定宽度的气帘,所设计的喷嘴结构为 非轴对称结构,其沿气流流动方向的截面为矩形,腔体 的上曲面采用拉法尔管的曲线。

由气体动力学知识知: 拉法尔喷管中气流运动规 律遵循一元恒定等熵流动之变截面气流运动规律。在 喷管中气流状态的变化, 主要取决于管道截面的变化, 因此要控制气流按一定的规律变化, 就必须使喷管具 有一定的形状^[3,5,6]。喷管截面的变化与气体流速的 变化关系遵循下式^[3]: $\underline{dt}_{A} = (Ma^{2} - 1) \frac{dv}{v}$ (1)

式中, *A* 为流体流过的截面积, *x* 为流体流动的速度, 马 赫数*Ma* 是决定拉法尔喷管截面积、压强、气体密度以 及流量变化的重要因素, 因此在设计过程中, 马赫数 *Ma*是一个主要参数。

一元恒定等熵流动遵循以下几个基本方程 组^[3 4]: 连续性方程: ρ_A = 常数, 能量方程: $a^2 / (K - 1) + v^2 / 2 =$ 常数, 状态方程: *p* = (RT, 运动方程: $\oint / \rho + v^2 / 2 =$ 常数, 对等熵过程: *p* / ρ = 常数。 式中, ρ 为流体密度 (kg/m³); *p* 为压力 (Pa); *T* 为流体绝 对温度 (K); *R* 为气体常数 (*R* = 287J/kg•K), *K* 为绝热 指数 (对双原子气体, *K* = 1 4)。将以上方程联立可求 解恒定等熵气流问题。本设计用 C⁺⁺编制了计算程序 对上述方程进行求解, 建立了喷嘴腔体曲线方程。

考虑到与激光器焊接头的安装配合并综合各种喷 管设计方法,采用弯曲喉部并最大转折角 β_a等于 0 5V₁(V₁为*M*a_a对应的普朗特-迈耶角)的圆弧型收缩

Fig 2 The schematic diagram of nozzle top curve

喷嘴上部曲线从喉部到 $BC \propto B$ 点处有最大的斜率,对应最大转折角为 β_B 。 B 点称为转折点, C 点称为终止点,曲线在 C 点的斜率为 0, B 点以前的曲线的设计是为了把喉部的均匀音速流变成转折点 B 处的泉流, B 点以后段曲线是把超音速泉流变成满足 Ma_d 要求的均匀平行流。由于收缩段曲线对出口气帘的影响较小,为了简化计算,其 B 点以前的曲线用圆弧加直线组成,圆心位于通过喉部的 y轴上,圆弧与直线相切于 P 点。圆弧的作用在于使喉部的平直音速流向泉流过渡,比较长的一段直线,有利于气流转变成泉流,并以泉流形式加速。直线段越长,越能够使流动充分接近真正的泉流。如果超音速泉流已精确给定,则 B 点后的曲线的设计可无限逼近精确; B 点后的曲线

气流进入喷嘴经压缩段压缩后,在喉部达到音速, 仍段为初始膨胀段,在这一段内气体向外膨胀而加速,气流方向从壁面到 AB 曲线逐渐向外偏转并在转折点 B 处过渡成以超音速流动的泉流。BC 称为平行段,平行段内的气流继续膨胀,但此时主要是向内加速膨胀, BC 曲线的斜率逐渐减小,到 C 斜率转变为 Q,管口区 M ad 对应的马赫角为 山,直线 EC 同轴线的夹角等于山,当气流到达 EC 线时,气流完成了膨胀加速,其方向与轴线平行,达到所要求的 M ad 。至此喷管曲线设计完毕。设计的喷嘴腔体剖面图如图 3所示。

Fig 3 The cross-section of designed nozzle cavity (designed entrance pressure $p_0 = 4 \times 10^5$ Pa $Ma_d = 1.559$)

3 效果检验

为了验证所设计的非对称拉法尔腔体喷嘴的实际 效果,首先对加工出的喷嘴进行了气流纹影试验,观察 了喷嘴的气流状态,实际的气流状态如图 4所示。

由气流纹影试验可以看出,通过拉法尔喷嘴吹出

Fig. 4 The schlieren trials photo of Laval-cavity noz le(experimental gas CO_2 gas, experimental pressure 4×10^5 Pa)

的气帘气流在作用区范围内保持了一个稳定的层流状 态,沿气流传播方向的扩散角较小,同时气流挺度良 好,气帘下方负压区的气流扰动非常小。随后在 Trunpf 6000W 快速轴流 CO2 激光器上进行了实际焊 接检验。为了观察气帘对聚焦镜的保护效果,使用了 f = 200mm 的抛物铜镜, 对 2024, 2219, 7075, 1420铝合 金及不锈钢等材料进行了大量的焊接试验。焊接时激 光功率为 3000W ~ 5400W, 焊接速度 2m /m in ~ 5m / m in 焊接保护气为 H e(20L/m in), 气帘保护气为 N₂(4 ×10⁵ Pa), 离焦量为 + 1mm。累积焊接试验后, 取下聚 焦镜后观察到镜子表面没有飞溅物。焊接试验后观察 到的聚焦镜状态说明这种结构的喷嘴吹出的气帘可以 有效的吹除焊接飞溅物以保护透镜。目前,在实验室 的 Rofin-Sinar 3 5kW CO2 激光器 (slab)、Trumpf 6000W 快速轴流 CO2 激光器及 Rofin-Sinar 2 5kW Nd :YAG 激光器的焊接头上安装了这种结构的喷嘴, 使 用效果良好,没有发现聚焦透镜的污染问题。

4 结束语

借鉴拉法尔管的气动力学原理,进行气帘腔体设

(上接第 144页)

- [5] ZHAO G P, LÜ B D. In fluence of aperture lens with spherical aberration on the spectral behavior of polychromatic Gaussian Schell-model beams [J]. Optik, 2004, 115 (4): 181 ~ 185
- [6] ZHAO G P, LÜ B D. D iffraction-induced spectral switches of spherically aberrated polychromatic Gaussian beams [J]. A cta Physica Sinica 2004, 53 (9): 2974~2979(in Chinese).
- [7] KANDPALH C. Experimental observation of the phenomenon of speetral switch
 [J]. Journal of Optics A: Pure and Applied Optics 2001, 3
 (6): 296~299
- [8] PONOM AR ENKO S A, WOLF E. Spectral anomalies in a Fraunhofer

计,较好地解决了激光焊接过程中的透镜保护和负压 区的气流扰动问题。通过气流纹影试验和实际的激光 焊接检验,说明采用非轴对称拉法尔曲线腔体的喷嘴, 可以得到一个层流气帘,使用这种结构的气帘喷嘴可 以有效吹除激光焊接过程中产生的飞溅,实现对聚焦 镜的保护;同时由于负压区的气流扰动非常小,保证了 焊接质量。这些问题的解决,对激光焊接的工业化应 用具有积极的推动作用。

参考文献

- [1] SUTL FF D R, M CCAY T D, M CCAY M H et al. A laser welding nozzle for beam delivery optics protection [J]. Welding Journal 1992, 71 (6): 219 ~ 224
- WANG H L, HUANG W L, ZHOU Zh Y et al Laser welding of 8mm thick stain less steel plates [J]. Chinese Journal of Lasers, 2003, 30 (5): 463 ~ 466(in Chinese).
- [3] IUO T Q. Hydramechanics [M]. Beijing China Machine Press 2000 191~204(in Chinese)
- [4] WEN H X, LIU Y Q. DANG X A. The erection of the curve equation of the Laval nozzle and its numerical-controlled processing [J]. Journal of Northwest clust in the of Light Industry 1997, 15(4): 7~11(in Chinese).
- [5] XIAO A.H. Laval nozzle u sed in the positive pneum atic conveying system
 [1]. Journ al of W uhan Polytechnic University, 2002 (4): 31~ 32
 (m Chinese).
- PENG Y Ch, LIAO X, MO F B. Theoretic study on gas flow in de laval nozzles of different configurations [J]. Research on Iron & Steel 1999 (2): 43~ 45(in Ch inese).
- [7] LIChM. Study on the fluid field of full length rails quenching cooling to quality assurance [D]. Beijing Northern Jiaotong University 2001 24~33 (in Chinese).

diffraction pattern [J]. OptLett 2002, 27(14): 1211~ 1213.

- [9] AGRAWALG P, WOLF E Propagation-induced polarization changes in partially coherent optical beams [J]. J O S A, 2000, A17(11): 2019~2023.
- [10] GORIF, SANTARSEROM, PIQUEROG et al. Partially polarized G aussian Schell-model beams [J]. Journal of Optics A: Pure and Applied Optics 2001, 3(1): 1~ 9
- [11] MANDEL I, WOLF E Optical coherence and quantum optics [M]. Cambridge Cambridge University Press, 1995 327.