文章编号: 1001-3806(2006)05-0498 03

低碳钢 CO₂ 激光 脉冲 MAG电弧复合焊接工艺研究

高 明,曾晓雁^{*},胡乾午 (华中科技大学 激光加工国家工程研究中心,武汉 430074)

摘要:为了进一步了解激光-电弧复合焊接机理及其影响因素,采用 A3钢进行了 CO₂激光-脉冲金属熔化极活性气体保护焊(MAG)电弧复合焊接的工艺研究。分析了 CO₂激光-脉冲 MAG 电弧复 合焊接中焊接方向、热源间距、激光功率、电弧电流、焊接速度等工艺参数的影响。结果表明,采用适当的参数,激光电弧的能量能够有效耦合,增强焊接效果。 其中,复合焊接熔深是单独激光的 1.6倍、MAG电弧焊接的 2.2倍;焊接速度是单独激光的 2.7倍。

关键词: 激光技术;激光焊接;复合焊接;金属熔化极活性气体保护焊电弧;熔深

中图分类号: TG456 9 文献标识码: A

CO₂ laser-pulsed MAG hybrid welding of mild steel

GAO Ming, ZENG X iao-yan, H U Q ian w u

(National Engineering Research Center for Laser Processing HUST, Wahan 430074, China)

Abstract In order to understand the mechanism and effect factors of laser are hybrid welding hybrid welding combining CO_2 laser and pulsed metal active gas(MAG) are are taken to weld mild steels and the effect of various parameters on the welding penetration depth and quality is studied Laser and are can be coupled to enhance welding quality if using suitable parameters Compared with laser welding and MAG welding respectively hybrid welding penetration can be increased by 1. 6 and 2. 2 times while hybrid welding speed can increase 2.7 times that of laser welding

Key words laser technique, laser welding hybrid welding metal active gas arc, penetration depth

引 言

激光 电弧复合焊接以其独特的技术特点成为近 年来焊接领域的热点研究之一。国外发达国家对此展 开了积极的研究^[1-5],实验证明该技术不但继承了激 光焊接加工速度快、工件变形小、易于集成的特点,而 且由于电弧、填丝工艺的介入,还具有熔池搭桥能力 强、焊接熔深大、改善焊缝成分和组织等特点。近年 来,激光电弧复合焊接技术已经得到了一定的发展, 而且在汽车、石油、船舶、压力容器等特殊领域已有相 关的应用^[6-8]。

在已报道的研究工作中,由于 YAG激光器能够进 行光纤传输、光致等离子体屏蔽作用小等特点,使得研 究人员更加倾向于选用 YAG 激光器和电弧进行复合 焊接研究。相反,因为高功率 CO₂ 激光光致等离子体 对激光能量屏蔽大、需要特殊气体保护的影响^[9 10],针 对 CO₂ 激光器,尤其是高功率 CO₂ 激光-电弧复合焊 接研究非常有限。但在实际生产应用中,高功率 CO₂

作者简介: 高 明(1975-), 男, 博士研究生, 主要从事激 光焊接与激光-电弧复合焊接研究。

* 通讯联系人。 E-mail xy zen @ mail hust edu en 收稿日期: 2005-08-22,收到修改稿日期: 2005-09-13 激光器因其性能更加稳定,性能、价格比更加优良,并 能够获得更大的功率,更适合中厚板焊接而得到更加 广泛的应用。因此,CO2激光-电弧复合焊接的研究具 有更加深远的实际意义。再者,研究人员由于种种原 因很少报道激光复合焊接工艺过程中的一些关键技术 问题,在如何选择激光电弧复合焊接工艺参数上只有 少量的可参考信息。针对这些情况,作者采用A3钢 进行了 CO2激光脉冲金属熔化极活性气体保护焊 (metal active gas MAG)电弧复合焊接的工艺研究,研 究了焊接方向、激光功率、电弧功率、激光电弧热源间 距等工艺参数的影响,并结合焊接过程对试验结果进行 了讨论分析,旨在了解并掌握激光电弧复合焊接机理。

1 试验材料和设备

11 试验材料及装置

试验采用德国 Ronfin TR050 5000W CO_2 快轴流 激光器和 Panason ic脉冲焊机, 旁轴复合。激光光束模 式为 TEM₀₁, 整个光路经过 4块反射镜后反射聚焦, 焦 距为 286 5mm, 光斑直径 0 6mm, MAG 焊机 直流反 接。采用 H e-Ar-CO₂ 混合气体进行保护, 气体流量为 20L/m in, 直接从焊枪喷嘴流出。图 1为试验装置示意 图。试验材料为 A3钢板, 试板尺寸为 100mm × 50mm ×

7mm, 焊丝直径为 1.0mm。

1.2 试验方法

本次研究直接在试板上进行平板堆焊。焊接完成 后,将试样沿横截面切开,经过标准的金相试样制备工 序制成试样,采用 4% 硝酸酒精溶液腐蚀焊缝,运用体 式显微镜测量焊缝熔深和熔宽,并通过焊接熔池的熔 深来评定复合效果的好坏。试验约定 MAG电弧作用 在熔池前端时,焊接方向为 MAG 电弧在前,采用 MAG-laser表示;反之,采用 laserMAG表示(见图 1)。

试验过程中,除特定的变量外,如未特殊说明,采 用统一参数:焊接方向为 MAG 引导焊 (MAG-laser),激 光功率 P = 5000W, MAG电弧电流 I = 180A,焊接速度 v = 800mm / m in,两热源作用点间距 D = 2mm,焊丝干 伸长 l = 10mm,焊炬倾角 $\alpha = 60^{\circ}$,激光离焦量 $\Delta F = 0mm$,

2 试验结果与讨论

21 激光-电弧复合作用

在复合焊接过程中,由于众多参数间的相互影响 与制约,任一参数的变化都会导致工艺过程发生变化, 影响复合焊接结果。只有在一定的参数下才能保证热 源的有效耦合,得到增强的焊接熔深和焊接质量,否则 反而导致两者相互作用后的焊接熔深不升反降。

在 P = 5000W, I = 180A, v = 800mm /m in, D = 2mm, l = 10mm, $\alpha = 60^\circ$, $\Delta F = 0$ mm及 MAG-laser复合焊接的 情况下,能够得到具有明显耦合作用的复合焊接焊缝 (见图 2)。相对于相同速度下的激光焊接 (P = 5000W)和电弧焊接(I = 180A),复合焊接熔深是单独

Fig 2 Cross sectional photos of hser, arc and hybrid welds 激光的 1.6倍, MAG 电弧的 2.2倍。另外, 本试验条 件下 5000W 激光单独焊透 7mm 试板的最高速度为 300mm /m in, 复合焊接速度则在 800mm /m in 以上, 约 为激光焊接 2.7倍, 焊接效率大大提高。

如图 3所示,单独 MAG焊接在高速和小电流情况

Fig 3 Surface morphology of arc and hybrid welds at little arc current and high welding speed

a-I=60A, v=800mm /m in b-P=5000W, I=60A, v=800mm /m in c-I=180A, v=1200mm /m in d-P=5000W, I=180A, v=2000mm /m in

下都出现明显的断弧现象。而在复合焊接中,即使焊接电流为 60A (800mm/min)和焊接速度达到 2000mm/min(180A),由于激光的存在,整个焊接过程 非常稳定,焊缝表面均匀一致。这进一步证实激光对 电弧有很强的稳定作用。

2 2 工艺参数对焊缝成形的影响

2 2 1 焊接方向和激光,电弧作用点间距(D)的影响 如图 4 图 5所示,随着D 的变化,焊接熔深存在一个 最大值。MAG-haser在 D = 2mm 时得到最大熔深, laserMAG则在 D = 1mm 得到最大熔深。在同样的 D 下,MAG-haser能够获得更大的熔深和更小的熔宽。这 是因为 haserMAG 焊接时,MAG 焊枪处于前倾焊方 位,电弧力后排熔池金属的作用减弱,熔池底部液体金 属增厚,熔深减小,而电弧对熔池前方母材的预热作用 增强,故形成更大的熔宽和较小的焊接熔深。

随着 D 的增加, 两者等离子逐步分离, 相互作用 开始减弱。另一方面, 保护气体由喷嘴至熔池的距离 增加, 对熔池的保护作用和激光等离子体屏蔽的抑制 能力也相对减弱, 降低了工件的激光吸收率。对于 MAG-laser, 由于 MAG电弧首先作用于工件表面, 预热 作用较强, 即使在 D 达到 6mm, 激光电弧等离子体完 全分离,保护气体等离子体抑制作用变差的情况下,焊 接熔深仍然略大于单独激光焊接熔深。反观 laser-MAG,因为 MAG 电弧作用于激光作用点后端,预热作 用有限,D 增大至一定程度后,焊接熔深开始低于单独 激光焊接熔深。这也说明复合焊接的熔深主要取决于 激光"小孔"的穿透能力。

当 *D* = 0mm 时,两种不同方向的焊接都得到较小的熔深,这是因为激光直接作用在焊丝上,部分能量用于焊丝的熔化,导致激光能量散失严重,穿透能力下降,焊接熔深降低。

2 2 2 激光功率的影响 随着激光功率 P的增加, 熔深增加,而且 MAG 电流越大,对应焊接熔深越大 (见图 6)。在对应的电流下,随着 P 的增加焊接熔深

Fig 6 Effects of laser power on penetration depth of hybrid wells 稳步增加。不过在 P 较小时,作用在工件上的能量有限,不能形成较强的光致等离子体和"小孔",对电弧 的引导和稳定作用有限,仅表现为热导焊。对比 I180A时不同激光功率下的焊缝形貌 (见图 7),可以发现在 $P \ge 3000$ W时,"小孔"出现,焊缝形貌开始呈现 深熔焊特征,而且随着 P 的增加,焊缝深熔焊特征越来越明显。

Fig 7 Cross sectional photos of hybrid welds at various laser power 2 2 3 电弧电流的影响 不同于单独 MAG电弧焊接 熔深随电流逐步增加的规律,随着 *I* 的增加,复合焊接 熔深的变化规律可分为两个区域 (见图 8):当 *I* ≤ 120A时,焊接熔深在 90A 时达到最大值;当 *I* ≥ 120A 时,随着 *I* 的增加,焊接熔深逐步增加。

Fig 8 Effects of MAG aurrent on penetration depth of hybrid welds

如前所述,复合焊接熔深的提高取决于电弧预热 作用和激光电弧耦合作用的相互作用。在 *I* ≤ 120A 时,高速焊接下电弧稳定度不高,此时激光等离子体能 够为电弧提供足够的带电离子稳定电弧,耦合作用逐 步增强。随着 *I* 的增加,激光等离子体反而使弧柱区 带电粒子增多,电弧电阻增加,电压升高,耦合效果减 弱。同时随着 *I* 的增加,预热作用不断增强。这样在 该区域内随着 *I* 的增加,两者的相互作用使熔深在 90A时取得最大值。当 *I* > 120A 时,电弧形成稳定的 喷射过渡,激光稳弧能量大大减少,电弧预热作用也增 强,工件对激光的吸收率得到提高,激光穿透能力增 强,从而熔深增加。

2 2 4 焊接速度的影响 随着 v的提高,焊接熔深急 剧下降,具有与激光焊接类似的规律(见图 9)。因为

Fig 9 Effects of welding speed on penetration depth of hybrid welding and aser welding

的提高,激光和电弧作用在工件上的能量密度也同时下降。不过因为两者的耦合作用,在相同的焊接条件和本试验给定的速度范围内,对应速度的复合焊接熔深比单独激光熔深提高了04倍~075倍。这表明复合焊接对于提高焊接速度具有积极的意义。

3 结 论

(1)在给定参数下, CO₂ 激光同 MAG 电弧具有良好的耦合效果,焊接熔深和焊接速度均得到大幅度提高。复合焊接熔深是单独激光的 1.6倍, MAG 电弧的 2.2倍。在同样焊透 7mm试板和 5000W 激光下,复合焊接速度是激光焊接速度的 2.7倍。

(2)同样的焊接条件下, MAG-laser焊接能够得到 比 laserMAG焊接更大的熔深和更小的熔宽。其中 MAG-laser焊接在 *D* = 2mm 时获得最大熔深, laser-MAG焊接则在 1mm时得到最大熔深。

(3)复合焊接熔深随着激光功率的增加而增加。 只有当 P 增加至一定功率时,复合焊接才开始呈现深 熔焊特征。

(4)随着电弧电流的增加,复合焊接熔深的变化 规律以可分为两个区域范围:当电流 *I*≤120A 时,焊接 熔深先升后降;当 *I*>120A 时,焊接熔深逐步增加。 当 $n_A a \neq n_B b$ 时,对于含负折射率材料光子晶体, $|\cos[\kappa(\omega)d]|$ 有可能会大于 1,故布洛赫波矢 $\kappa(\omega)$ 会有复数解。计算结果如图 3所示。此时它的禁带并 不呈周期性出现,而且 $\kappa(\omega)$ 极不规则。

从图 2a和图 3a可以看出,含负折射率材料的光 子晶体比传统的光子晶体具有更好的角度性,可以用 来实现全方位的反射^[10]。

对于 A, B 均为正折射率材料时光子晶体,当 $n_A a \neq n_B b$ 时,会出现 $|\cos[\kappa(\omega)d]|$ > 1的情况,这样 的布洛赫波矢 $\kappa(\omega)$ 是不存在的,故基频偶数倍处的 光子禁带又出现了。

3 结束语

通过对色散方程的计算与仿真,分别分析了光子 晶体材料均为正折射率时 $n_A a = n_B b = n_A a \neq n_B b$ 的情 况,发现在 $n_A a = n_B b$ 时,光子晶体没有禁带;而当 $n_A a \neq n_B b$ 时光子晶体禁带出现在基频的偶数倍处。 考虑到色散材料其中之一为负折射率,当 $n_A a = n_B b$ 时,光子晶体的通带仅为离散的一些数值,布洛赫波矢 $\kappa(\omega)$ 的虚数解对应着光子晶体的禁带;而当 $n_A a \neq n_B b$ 时,光子晶体虽然存在禁带,但是其出现的周期极 不规则。因此在制备含负折射率材料的光子晶体时, 应尽可能满足 $n_A a = n_B b$,使其得到较好的传输特性。

本文中的结论为设计和利用超宽禁带的光子带隙 结构提供了可能性。尽管本文中只对一维光子晶体作 了分析,但是这些结论同样可以推广到二维和三维的 光子带隙结构中。在理论计算中,作者忽略了介质层

(上接第 500页)

参考文献

- STEEN W M. A rc augmented laser processing of materials [J]. JA P, 1980, 51(11): 5636~5641
- [2] JDK NEN T. W elding of ship structural steel A36 using a Nd YAG lar ser and gasmetal arc welding [J]. Journal of Laser Application 2000, 12(5): 185~ 188.
- [3] UCHIUM I S WANG J B, KATAYAMA S. Welling of ship structural steel A 36 using a N dYAG laser and gas-metal arc welding of alum i num alloy [A]. ICALEO Hybrid Laser Welding [C]. Orlando Laser Institute of America 2004 76~ 85.
- [4] FELIMAN A, JERNSTRöM P, KU JANPää V. CO₂-GMA hybrid welling of carbon steel-th e effect of shielding gas composition [A]. ICA-LEO Section A [C]. O rlando Laser Institute of America 2003 56~ 65.
- [5] SH IDE T, TSUBOTA S, WATANABE M. Latest M IG, T IG arcYAG laser hybrid welding systems for various welding products [J]. SP E.

的本身色散,仅考虑光子晶体的结构色散,这是理想情况,实际中的满足条件的合成材料都是含色散且有损 耗的。但是这不影响利用本文中的结论来对负折射率 材料进行更进一步的研究。

参考文献

- [1] SONG JF, CHANG Y Ch, WANG H S T ran sm ission characteristic of photon ic crystal waveguide [J]. Chinese Journal of Lasers 2002, 26 (8): 711 ~ 713(in Chinese).
- [2] PENDRY J B, HOLDEN A J M agnetism from conductors and err hanced nonlinear phenomena [J]. EEE Transactions on M icrowave Theory and Techniques 1999, 47(11): 2075.
- [3] ENCHETA N Is Foster's reactance thermo satisfied in double-negar tive and single-negative meila [J]. M icrowave and Optical Technolor gy Letters 2003, 39(1): 11~13
- [4] MARKO P, SOUKOULIS C M. Transm is ion properties and electror magnetic parameters of double negative metamaterials [J]. Optical Express 2003 11(7): 649~661.
- [5] JOANNOPOULOS J.D., MEADE R. D., W.N.N. J.N. Photonic crystals molding the flow of them [W]. Priceton Priceton University Press, 1995–13~ 117.
- [6] WU I, HE S I, SHEN L F B and structure for one dimensional photonic crystal containing left handed materials [J]. Phys Rev, 2003 B67(23): 245103~235108
- [7] YABA A, YEH P. Optical waves in crystals [M]. New York W iley 1984 67~ 88.
- [8] SMITH D R, DALICHAOUCH R, KROLL N. Photonic band structure and defects in one and two dimensions [J]. J O S A, 1993, B10(2): 314~ 321
- [9] NEFEDOV IS, TRETYAKOV S.A. Photonic band gap structure cortaining metamaterial with negative permittivity and permeability [J]. Phys.Rev, 2002, E66 036611.
- [10] Y N Ch P, LIU N H. Transmission properties of one-dimensional phσ tonic crystals containing negative refraction materials [J]. Chinese Journal of Lumin escience, 2005, 26(2): 173~175 (in Chinese).

2003 4831 347~ 352

- [6] KA ERLE S BONGARD K, DAHMEN M. Innovative hybrid welding process in a industrial application [A]. ICALEO Section C [C]. Or landa Laser Institute of America, 2000. 91~98
- [7] PETR NG D, FUHRMANN C, WOLF N. Investigations and applications of laserA re-hybrid welding from thin sheets up to heavy section components [A]. ICALEO Section A [C]. Orlandor Laser Institute of America, 2003 1~ 10.
- [8] BAGGER C, SONDRUP L C, OLSEN F O. Laser/T G hybrid welding of pot for induction heater [A]. ICALEO Hybrid LaserWelding [C]. Orlando Laser Institute of America 2004 60~ 69.
- [9] XIAO R S, CHEN K, CHEN JM. Experimental research of the plasma shielding mechanism in the process of CO₂ laser welding [J]. Laser Technology, 2001, 25(3): 238~241(in Chinese).
- [10] TANG X H, ZHU H H, ZHU G F. Laser induced plasma absorption and control for CO₂ laser deep penetration welding [J]. China M e dn an ical Engineering 2000, 11(7): 741~743 (in Chinese).