[1] FREDERICK D, CENTES M, SALIEN F, et al. Generation of ultrahigh intensity ultrashort laser pulse: CPA chirped pulse amplification or frequency shift amplification technology[J]. Reflections on Physics, 2019, 13(61): 13-25(in French).
[2] MATTHEW C, JEREMY A, JAMES E P. The 2018 Nobel Prize in Physics: Optical tweezers and chirped pulse amplification[J]. Analytical and Bioanalytical Chemistry, 2019, 411(20): 5001-5005. doi: 10.1007/s00216-019-01913-z
[3] COSSACK M. All-optical scheme for generation of isolated attosecond electron pulses[J]. Physical Review Leters, 2019, 123(20): 202-203.
[4] SPRANGLE P, TING A, ESAREY E, et al. Tunable, short pulse hard X-rays from a compact laser synchrotron source[J]. Journal of Applied Physics, 1993, 72(11): 5032-5038.
[5] YEUNG M, DRONMEY B, ADAMS D, et al. Beaming of high-order harmonics generated from laser-plasma interactions[J]. Physical Review Letters, 2013, 110(16): 165002. doi: 10.1103/PhysRevLett.110.165002
[6] LI Y F, SHAISULTANOV R, HASTSAGORTSYAN K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 2019, 122(15): 154801. doi: 10.1103/PhysRevLett.122.154801
[7] TIAN Y W, YU Y, LU P X, el al. Broaden and redshift of harmonic emission from electron oscillation driven by femtosecond intense laser pulses[J]. High Power Laser and Particle Beams, 2005, 17(12): 1761-1764(in Chinese).
[8] FENG L Q. Generation of wavelength-tunable single-order harmonic through controlling laser waveform [J]. Laser Technology, 2020, 44(1): 37-41(in Chinese).
[9] TIAN Y W, LI L, LI K, et al. Single zeptosecond pulse generation by scattering of a relativistic electron with an intense circularly polarized laser pulse[C]// Fourteenth National Conference on Laser Tech- nology and Optoelectronics. Shanghai: Chinese Journal of Lases, 2019: 111702C.
[10] LIU H, LI Y, FENG L Q. Generation of single harmonic emission peak by using chirped combined field[J]. Laser Technology, 2020, 44(3): 283-287 (in Chinese).
[11] VAIS O E, BYCHENKOV V Y. Nonlinear Thomson scattering of a tightly focused relativistically intense laser pulse by an ensemble of particles[J]. Quantum Electronics, 2020, 50(10): 922-928. doi: 10.1070/QEL17344
[12] RYKOVANOV S G, GEDDES C G R, SCHROEDER C B, et al. Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping[J]. Physical Review Accelerators and Beams, 2016, 19(3): 1-10.
[13] LIU H, LI Y, YAO Zh, et al. Study on harmonic cutoff energy and intensity under the control of chirped laser [J]. Laser Technology, 2017, 41(5): 708-711(in Chinese).
[14] VENKAT P, HOLKUNDKAR A R. Higher harmonics and attose-cond pulse generation by laser induced Thomson scattering in atomic clusters[J]. Physical Review Accelerators and Beams, 2019, 22(8): 084401. doi: 10.1103/PhysRevAccelBeams.22.084401
[15] ZHENG J, SHENG Zh M, ZHANG J, et al. Parameters that influence the nonlinear Thomson scattering of single electrons in high-intensity laser fields [J]. Acta Physica Sinica, 2005, 54(3): 1018-1035 (in Chinese). doi: 10.7498/aps.54.1018
[16] ESAREY E, RIDE P, SPRANGLE P. Nonlinear Thomson scattering of intense laser pulses from beams and plasmas[J]. Physical Review, 1993, E48(4): 3003-3021.
[17] POPA A. Accurate calculation of high harmonics generated by relativistic Thomson scattering[J]. Journal of Physics, 2007, B41(1): 015601.
[18] LEE K, CHA Y H, SHIN M S, et al. Relativistic nonlinear Thomson scattering as attosecond X-ray source[J]. Physical Review, 2003, E67(2): 26502.
[19] GAO J. Thomson scattering from ultrashort and ultraintense laser pulses[J]. Physical Review Letters, 2004, 93(24): 243001. doi: 10.1103/PhysRevLett.93.243001
[20] DUDNIKOVA G I, BYCHENKOV V Y, MAKSIMCHUKA M, et al. Electron acceleration by few-cycle laser pulse with single-wavelength spot size[J]. Physical Review, 2003, E67(2): 02641.
[21] COSSACK M, SCHONENBERGER N, HOMMELHOFF P. Ponde-romotive generation and detection of attosecond free-electron pulse trains[J]. Physical Review Letters, 2018, 120(10): 103203. doi: 10.1103/PhysRevLett.120.103203