[1] LI X L, ZHANG Y. Summary of road information extraction methods[J]. Bulletin of Surveying and Mapping, 2020(6): 22-27(in Chin-ese).
[2] WANG D H. Road network information extraction based on GPS tra-jectory data of low-frequency taxi[D]. Wuhan : Wuhan University, 2017: 2-4(in Chinese).
[3] DAI J G, WANG Y, DU Y, et al. A review of road extraction methods from optical remote sensing images[J]. Journal of Remote Sensing, 2020, 24(7): 804-823(in Chinese).
[4] HUI Zh Y, HU Y J. Methods for extracting roads in the onboard LiDAR point cloud[J]. Mapping Science, 2017, 42(3): 70-74(in Chinese).
[5] LIU J N, ZHANG X H. Using laser intensity information classification laser scanning altimetry data[J]. Wuhan University Journal (Information Science Edition), 2005, 30(3): 189-193(in Chinese).
[6] ZHANG X H. The theory and method of airborne lidar measurement technology[M]. Wuhan: Wuhan University Press, 2007: 170-173(in Chinese).
[7] HE R, HE M Zh, DU Zh Q, et al. Mountain road extraction based on airborne laser point cloud data[J]. Geographic Information World, 2015, 22 (6): 116-121(in Chinese).
[8] WANG P, XING Y Q, WANG Ch, et al. Research on the method of extracting mountain roads from airborne LiDAR data[J]. Remote Sensing Technology and Application, 2017, 32(5): 851-857(in Chin-ese).
[9] HAN D F. Research on mountain LiDAR road extraction method based on multi-feature constraint[D]. Changchun: Jilin University, 2018: 30-47(in Chinese).
[10] HUI Zh Y. Research on the key technology of extracting urban road network from airborne LiDAR point cloud[D]. Wuhan: China University of Geosciences, 2017: 50-68(in Chinese).
[11] SÁNCHEZ J M, RIVERA F F, DOMIÍNGUEZ J C C, et al. Automatic extraction of road points from airborne LiDAR based on bidirectional skewness balancing[J]. Remote Sensing, 2020, 12(12): 2025. doi: 10.3390/rs12122025
[12] AZIZI Z, NAJAFI A, SADEGHIAN S. Forest road detection using LiDAR data[J]. Journal of Forestry Research, 2014, 25(4): 975-980. doi: 10.1007/s11676-014-0544-0
[13] FERRAZ A, MALLET C, CHEHATA N. Large-scale road detection in forested mountainous areas using airborne topographic lidar data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 112: 23-36. doi: 10.1016/j.isprsjprs.2015.12.002
[14] YUAN P F, HUANG R G, HU P B, et al. Road centerline extraction based on multispectral LiDAR data[J]. Journal of Geo-Information Science, 2018, 20(4): 452-461(in Chinese).
[15] ZHAO X Q, GUO Q H, SU Y J, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 79-91. doi: 10.1016/j.isprsjprs.2016.03.016
[16] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
[17] GUO J Q, YAO Y B, ZHOU Y J. PM2.5 stochastic forest prediction model based on GNSS meteorological parameters[J]. Science of Surveying and Mapping, 2021, 46(4): 37-42 (in Chinese).
[18] XIONG Y, GAO R Q, XU Zh Y. Random forest method for dimension-reduction and classification of airborne LIDAR point cloud data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 508-518(in Chinese).
[19] XIA X L, ZHANG T T, ZHOU T, et al. Tracking mode decision of compound seeker based on random forest[J]. Laser Technology, 2021, 45(6): 811-816(in Chinese).
[20] WANG Y Y, CHENG S C. A survey of evaluation and design for AUC based classifier[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(1): 64-71(in Chinese).