[1] SAI-HALASZ G A, TSU R, ESAKI L. A new semiconductor superlattice[J]. Applied Physics Letters, 1977, 30(12): 651-653. doi: 10.1063/1.89273
[2] ESAKI L. InAs-GaSb superlattices-synthesized semiconductors and semimetals[J]. Journal of Crystal Growth, 1981, 52(1): 227-240.
[3] SMITH D L, MAILHIOT C. Proposal for strained type Ⅱ superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545-2548. doi: 10.1063/1.339468
[4] DENTE G C, TILTON M L. Comparing pseudopotential predictions for InAs/GaSb superlattices[J]. Physical Review B, 2002, 66(16): 165307. doi: 10.1103/PhysRevB.66.165307
[5] LIVNEH Y, KLIPSTEIN P C, KLIN O, et al. k·p model for the energy dispersions and absorption spectra of InAs/GaSb type-Ⅱ superlattices[J]. Physical Review B, 2012, 86(23): 235311. doi: 10.1103/PhysRevB.86.235311
[6] NG S T, FAN W J, DANG Y X, et al. Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k·p models[J]. Physical Review B, 2005, 72(11): 115341. doi: 10.1103/PhysRevB.72.115341
[7] 杨斌. 二类超晶格红外光电材料研究与应用[J]. 中国基础科学, 2019, 21(1): 52-54.YANG B. Investigation and application of type Ⅱ superlattice infrared optoelectronic materials[J]. China Basic Science, 2019, 21(1): 52-54 (in Chinese).
[8] 尚林涛, 王静, 邢伟荣, 等. 红外探测Ⅱ类超晶格技术概述(一)[J]. 激光与红外, 2021, 51(4): 404-414.SHANG L T, WANG J, XING W R, et al. Overview of infrared detection type-Ⅱ superlattice technology(I)[J]. Laser & Infrared, 2021, 51(4): 404-414 (in Chinese).
[9] BROWN G J, SZUMLOWICZ F, MAHALINGAM K, et al. Recent advances in InAs/GaSb superlattices for very long wavelength infrared detection[J]. Proceedings of the SPIE, 2003, 4999: 457-466. doi: 10.1117/12.483916
[10] 王忆锋, 余连杰, 钱明. Ⅱ类超晶格甚长波红外探测器的发展[J]. 光电技术应用, 2011, 26(2): 45-52.WANG Y F, YU L J, QIAN M. Development of type-Ⅱ superla-ttices for very long wavelength infrared detector[J]. Electro-optic Technology Application, 2011, 26(2): 45-52(in Chinese).
[11] WEI Y, RAZEGHI M. Modeling of type-Ⅱ InAs/GaSb superlattices using an empirical tight-binding method and interface engineering[J]. Physical Review B, 2004, 69(8): 428-433.
[12] 谢修敏, 徐强, 陈剑, 等. 锑化物Ⅱ类超晶格中远红外探测器的研究进展. 激光技术, 2020, 44(6): 688-694.XIE X M, XU Q, CHEN J, et al. Research progress on antimonide based type-Ⅱ superlattices mid- and long-infrared detectors. Laser Technology, 2020, 44(6): 688-694(in Chinese).
[13] 常发冉, 蒋志, 王国伟, 等. 锑化物超晶格长波红外焦平面探测器研究进展[J]. 中国科学: 物理学、力学、天文学, 2021, 51(2): 32-49.CHANG F R, JIANG Zh, WANG G W, et al. Progress of long wavelength infrared focal plane arrays based on antimonide compounds superlattice[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2021, 51(2): 32-49(in Chinese).
[14] 张莹, 刘塑. 国外红外焦平面探测器组件可靠性研究综述[J]. 红外技术, 2012, 34(3): 134-139.ZHANG Y, LIU S. Reliability research on foreign infrared focal plane assembly[J]. Infrared technology, 2012, 34(3): 134-139 (in Chinese).
[15] 孙伟峰. InAs/(In)GaSb超晶格的能带结构和器件设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 195.SUN W F. Band structure and device design study of InAs/(In)GaSb superlattice[D]. Harbin: Harbin Institute of Technology, 2011: 195. (in Chinese).
[16] KLIPSTEIN P C, LIVNEH Y, GLOZMAN A, et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2984-2990. doi: 10.1007/s11664-014-3169-3
[17] PIKUS G E. Effect of deformation on the hole energy spectrum of germanium and silicon[J]. Soviet Physics-Solid State, 1960, 1: 1502-1517.
[18] 徐斯元. 基于高阶k·p方法的应变锗能带结构计算[D]. 西安: 西安电子科技大学, 2015: 88XU S Y. Band structure calculation of strained germanium based on high-order k·p method[D]. Xi'an: Xidian University, 2015: 88(in Chinese).
[19] QIAO P F, MOU S, CHUANG S L. Electronic band structures and optical properties of type-Ⅱ superlattice photodetectors with interfacial effect[J]. Optics Express, 2012, 20(3): 2319-2334. doi: 10.1364/OE.20.002319
[20] SCHEINERT M. Optical pumping: A possible approach towards a SiGe quantum cascade laser[DB/OL]. (2007-10-08)[2022-05-06]. https://123dok.net/document/yng7kn51-optical-pumping-possible-approach-towards-quantum-cascade-laser.html.
[21] BAHDER T B. Eight-band k·p model of strained zinc-blende crystals[J]. Physical Review B, 1990, 41(17): 11992. doi: 10.1103/PhysRevB.41.11992
[22] WOOD D M, ZUNGER A. Successes and failures of the k·p method: A direct assessment for GaAs/AlAs quantum structures[J]. Physical Review B, 1996, 53(12): 7949-7963. doi: 10.1103/PhysRevB.53.7949
[23] BAHDER T B. Analytic dispersion relations near the Γ point in strained zinc-blende crystals[J]. Physical Review B, 1992, 45(4): 1629-1637. doi: 10.1103/PhysRevB.45.1629
[24] BASSANIF, PARRAVICINI G P, BALLINGER R A, et al. Electronic states and optical transitions in solids[J]. Physics Today, 1976, 29(3): 58-59. doi: 10.1063/1.3023374
[25] BURT M G. The justification for applying the effective-mass approximation to microstructures[J]. Journal of Physics: Condensed Ma-tter, 1992, 4(32): 6651. doi: 10.1088/0953-8984/4/32/003
[26] KLIPSTEIN P C. Operator ordering and interface-band mixing in the Kane-like Hamiltonian of lattice-matched semiconductor superlattices with abrupt interfaces[J]. Physical Review B, 2010, 81(23): 235314. doi: 10.1103/PhysRevB.81.235314
[27] LIU C X, QI X L, ZHANG H, et al. Model Hamiltonian for topological insulators[J]. Physical Review B, 2010, 82(4): 045122. doi: 10.1103/PhysRevB.82.045122
[28] SZMULOWICZ F. Derivation of a general expression for the momentum matrix elements within the envelope-function approximation[J]. Physical Review B, 1995, 51(3): 1613-1623. doi: 10.1103/PhysRevB.51.1613
[29] CHANG Y C, JAMES R B. Saturation of intersubband transitions in P-type semiconductor quantum wells[J]. Physical Review B, 1989, 39(17): 12672-12681. doi: 10.1103/PhysRevB.39.12672
[30] KLIPSTEIN P C, LIVNEH Y, KLIN O, et al. A k·p model of InAs/GaSb type Ⅱ superlattice infrared detectors[J]. Infrared Physics & Technology, 2013, 59(6): 53-59.
[31] RAZEGHI M, NGUYEN B M, DELAUNAY P Y, et al. State-of-the-art type Ⅱ antimonide-based superlattice photodiodes for infrared detection and imaging[J]. Proceedings of the SPIE, 2009, 7467: 181-193.
[32] RODRIGUEZ J B, CHRISTOL P, CHEVRIER F, et al. Optical characterization of symmetric InAs/GaSb superlattices for detection in the 3-5 μm spectral region[J]. Physica, 2005, E28(2): 128-133.
[33] HAUGAN H J, BROWN G J, SMULOWICZ F, et al. InAs/GaSb type-Ⅱ superlattices for high performance mid-infrared detectors[J]. Journal of Crystal Growth, 2005, 278(1/4): 198-202.
[34] HAO R T, XU Y Q, ZHOU Z Q, et al. MBE growth of very short period InAs/GaSb type-Ⅱ superlattices on (001) GaAs substrates[J]. Journal of Physics, 2007, D40(21): 6690-6693.
[35] 李俊斌, 李东升, 杨玉林, 等. 以色列SCD公司的Ⅲ-Ⅴ族红外探测器研究进展[J]. 红外技术, 2018, 40(10): 936-945.LI J B, LI D Sh, YANG Y L et al. Ⅲ-Ⅴ semiconductor infrared detector research in SCD of israel[J]. Infrared Technology, 2018, 40(10): 936-945(in Chinese).
[36] 胡锐, 邓功荣, 张卫锋, 等. nBn型InAs/GaSb Ⅱ类超晶格红外探测器光电特性研究[J]. 红外技术, 2014, 36(11): 863-867.HU R, DENG G R, ZHANG W F, et al. Electrical and optical properties of nBn based on type-Ⅱ InAs-GaSb strained layer superlattice infrared detectors[J]. Infrared Technology, 2014, 36(11): 863-867(in Chinese).
[37] LI Q, MA W Q, ZHANG Y H, et al. Dark current mechanism of unpassivated mid wavelength type Ⅱ InAs/GaSb superlattice infrared photodetector[J]. Chinese Science Bulletin, 2014, 59(28): 3696-3700. doi: 10.1007/s11434-014-0511-3
[38] MANYK T, HACKIEWICZ K, RUTKOWSKI J, et al. Theoretical simulation of T2SLs InAs/GaSb cascade photodetector for HOT condition[J]. Journal of Semiconductors, 2018, 39(9): 094004 doi: 10.1088/1674-4926/39/9/094004
[39] 朱旭波, 彭震宇, 曹先存, 等. InAs/GaSb二类超晶格中/短波双色红外焦平面探测器[J]. 红外与激光工程, 2019, 48(11): 102-107.ZHU X B, PENG Zh Y, CAO X C, et al. Mid-/short-wavelength dual-color infrared focal plane arrays based on type-Ⅱ InAs/GaSb superlattice[J]. Infrared and Laser Engineering, 2019, 48(11): 102-107. (in Chinese).
[40] KIM H S. Dark current analysis of an InAs/GaSb type Ⅱ superla-ttice infrared photodiode with SiO2 passivation[J]. Journal of the Korean Physical Society, 2021, 78(11): 1141-1146. doi: 10.1007/s40042-021-00137-8
[41] KESARIA M, ALSHAHRANI D, KWAN D, et al. Optical and electrical performance of 5 μm InAs/GaSb type-Ⅱ superlattice for NOx sensing application-ScienceDirect[J]. Materials Research Bu-lletin, 2021, 142: 111424. doi: 10.1016/j.materresbull.2021.111424
[42] KRIZMAN G, CAROSELLA F, BERMEJO-ORTIZ J, et al. Magneto-spectroscopy investigation of InAs/InAsSb superlattices for midwave infrared detection[J]. Journal of Applied Physics, 2021, 130(5): 055704. doi: 10.1063/5.0054320
[43] DU Y N, WANG L, XU Y, et al. Design and calculation of type-Ⅱ superlattice resonant cavity-enhanced photodetector with high quantum efficiency and low dark current[J]. Physica, 2021, 619: 413201. doi: 10.1016/j.physb.2021.413201
[44] SINGH A, MUKHERJEE S, MURALIDHARAN B. Comprehensive quantum transport analysis of M-superlattice structures for barrier infrared detectors[J]. Journal of Applied Physics, 2022, 131(9): 094303. doi: 10.1063/5.0083120
[45] HAO X, TENG Y, ZHU H, et al. High-operating-temperature MWIR photodetector based on a InAs/GaSb superlattice grown by MOCVD[J]. Journal of Semiconductors, 2022, 43(1): 53-56.
[46] NGUYEN B M, HOFFMAN D, DELAUNAY P Y, et al. Dark cu-rrent suppression in type Ⅱ InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier[J]. Applied Physics Letters, 2007, 91(16): 163511.
[47] SUNDARAM M, REISINGER A, DENNIS R, et al. 1024×1024 LWIR SLS FPAs: Status and characterization[J]. Proceedings of the SPIE, 2012, 8353: 83530W.
[48] KLIPSTEIN P C, AVNON E, BENNY Y, et al. InAs/GaSb type Ⅱ superlattice barrier devices with a low dark current and a high-quantum efficiency[J]. Proceedings of the SPIE, 2014, 9070: 90700U.
[49] WANG F, CHEN J, XU Z, et al. Molecular beam epitaxy growth of high quality InAs/GaSb type-Ⅱ superlattices for long wavelength infrared detection[J]. Proceedings of the SPIE, 2014, 9300: 930008.
[50] KLIPSTEIN P C, AVNON E, AZULAI D, et al. Type Ⅱ superla-ttice technology for LWIR detectors[J]. Proceedings of the SPIE, 2016, 9819: 98190T.
[51] HUANG M, HE L, CHEN J, et al. InAs/GaAsSb type-Ⅱ superlattice LWIR focal plane arrays detectors grown on InAs substrates[J]. IEEE Photonics Technology Letters, 2020, 32(8): 453-456.
[52] KOPYTKO M, GOMÓKA E, MANYK T, et al. Barrier in the valence band in the nBn detector with an active layer from the type-Ⅱ superlattice article info abstract[J]. Opto-Electronics Review, 2021, 29: 1-4.
[53] MARTYNIUK P, WOJTAS J, MICHALCZEWSKI K, et al. Demonstration of the long wavelength InAs/InAsSb type-Ⅱ superlattice based methane sensor-ScienceDirect[J]. Sensors and Actuators A: Physical, 2021, 332: 113107.
[54] LI X, JIANG D, ZHANG Y, et al. Investigations of quantum efficiency in type-Ⅱ InAs/GaSb very long wavelength infrared superla-ttice detectors[J]. Superlattices and Microstructures, 2016, 92: 330-336.
[55] 岳壮豪. 锑化物超晶格甚长波红外探测器的结构设计与模拟[D]. 南京: 南京大学, 2020: 76.YUE Zh H. Design and simulation of sb-based superlattice very-long-wavelength infrared detector[D]. Nanjing: Nanjing University, 2020: 76(in Chinese).