[1] MONTAGNINO L A. Test and evaluation of the Hubble Space Telescope 2.4-meter primary mirror[J]. Proceedings of SPIE, 1985, 571: 432.
[2] CATANZARO B E, DOYLE D, PFUND J, et al. The ESA Herschel telescope tiger team metrology review: Test results[J]. Proceedings of SPIE, 2008, 7010: 70102R. doi: 10.1117/12.789196
[3] FRANSEN S, DOYLE D, CATANZARO B. Opto-mechanical modeling of the Herschel space telescope at ESA/ESTEC[J]. Proceedings of SPIE, 2011, 8336: 833604. doi: 10.1117/12.915669
[4] GRIFFIN M, ABERGEL A, ADE P, et al. Herschel-SPIRE: Design, performance, and scientific capabilities[J]. Proceedings of SPIE, 2006, 6265: 62650A.
[5] SAFA F, BOUGOIN M. Development and test of a 1.35msilicon carbide reflector[J]. Proceedings of SPIE, 2000, 1117: 111739.
[6] GARDNER J P. The science requirements of the James webb space telescope[J]. Proceedings of SPIE, 2007, 1007: 10077.
[7] GARDNER J P. The James webb space telescope[J]. Space Science Reviews, 2006, 123(4): 485-606. doi: 10.1007/s11214-006-8315-7
[8] GREENHOUSE M A. The JWST science instrument payload: Mission context and status[J]. Proceedings of SPIE, 2014, 9143: 914307.
[9] ZHANG H S, SHANGGUAN A H, CHU C B, et al. Mechanical performance of magnetic flux-pinging mechanism in space large segmented reflect mirror[J]. Optics and Precision Engineering, 2019, 27(12): 2609-2617(in Chinese). doi: 10.3788/OPE.20192712.2609
[10] LILLIE C F. Large deployable telescopes for future space observatories[J]. Proceedings of SPIE, 2005, 5899: 1-12.
[11] ZHANG X J, FAN Y Ch, BAO H, et al. Applications and development of ultra large aperture space optical remote sensors[J]. Optics and Precision Engineering, 2016, 24(11): 2613-2626(in Chinese). doi: 10.3788/OPE.20162411.2613
[12] SONG D Y, SPRAGUE R W, MAcLEOD H A, et al. Progress in the development of a durable silver-based high-reflectance coating for astronomical telescopes[J]. Applied Optics, 1985, 24(8): 1164-1170. doi: 10.1364/AO.24.001164
[13] THOMAS N L, WOLFE J D. UV-shifted durable silner coating for astronomical mirrors[C]//Astronomical Telescopes and Instrumentation International Society for Optics and Photonics. New York, USA: IEEE, 2000: 312-323.
[14] SUN M Zh, WANG T T, WANG Y Ch, et al. Research development of high reflecting coating for large-diametermirror[J]. Chinese Journal of Optics, 2016, 9(2): 203-212(in Chinese). doi: 10.3788/co.20160902.0203
[15] WU P, FAN Y R, GUO J W, et al. High reflectivity aluminum film processed by nanosecond pulse laser[J]. Laser Technology, 2019, 43(6): 779-783(in Chinese).
[16] TANG J F, GU P F, LI H F. Modern optical thin film technology[M]. Huangzhou: Zhejiang University Press, 2006: 103(in Chinese).
[17] KANG J, XUAN B, XIE J J. Manufacture technology status of surface modified silicon carbide mirrors[J]. Chinese Journal of Optics, 2013, 6(6): 824-833(in Chinese). doi: 10.3788/co.20130606.0824
[18] ZHANG Ch R, ZHOU X G, CAO Y B, et al. The development of light-weight optics made of SiC and SiC matrix composites[J]. Spacecraft Recovery & Remote Sensing, 2003, 24(2): 14-19 (in Chinese).
[19] YANG B X. Research of SiC reflection mirror for space camera[J]. Spacecraft Recovery & Remote Sensing, 2003, 24(1): 15-18(in Chinese).
[20] LANG M, HU R, ZHANG Y Y, et al. Lightweight structure optimization of a 3m class large aperture space optical primary mirror[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(5): 55-63(in Chinese).
[21] YU J H, YU Q Y, FANG A L, et al. Real-time compensation of high efficiency grinding for the large aperture mirror[J]. Optical Technique, 2020, 46(4): 502-506(in Chinese).
[22] HE Sh K, BAI Y L, ZHOU Y M, et al. Characteristic of silver thin films on RB-SiC mirror with different nucleation layers[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(6): 59-66(in Chin-ese).
[23] ALLEGRIA G, CORRADI S, MARCHETT I M. Analysis of the effects of simulated synergistic LEO environment on solar panels[J]. Acta Astronautica, 2007, 60: 174-185.
[24] WEI Q, HE Sh Y, LIU H, et al. Review of space environment effects on reflection mirror[J]. Optical Technique, 2004, 30(4): 413-416(in Chinese).
[25] QI Y F, FANG J Zh, XIE C Q, et al. Research on the influence of environmental conditions on the optical quality of lightweight quartz mirrors[J]. Chinese High Technology Letters, 1993, 3(1): 11-14(in Chinese).
[26] QI Y F, FANG J Zh, XIE G Q. The influence of high-energy particle irradiation on the stability and optical properties of infrared quartz mirror[J]. Opto-Electronic Engineering, 1996, 23(1): 90-97(in Chinese).
[27] QI Y F, FANG J Zh, XIE G Q. The effect of high-energy particle irradiation on the optical properties and surface optical stability of zero-expansion glass-ceramics[J]. Opto-Electronic Engineering, 1996, 23(1): 98-105(in Chinese).
[28] WEI Q, LIU H, HE Sh Y, et al. Radiation effects of low-energy particles on optical performance of Al film reflector[J]. Opto-Electronic Engineering, 2006, 33(5): 141-144(in Chinese).
[29] CHEN J, DING N W, LI Z F. Organic polymer materials in the space environment[J]. Progress in Aerospace Sciences, 2016, 83: 37-56. doi: 10.1016/j.paerosci.2016.02.002
[30] FEI Zh H, ZHANG X L, LIU H. Optical degradation and damage model of F46/Ag under low-energy proton irradiation[J]. Spacecraft Environment Engineering, 2017, 34(2): 177-182(in Chinese).
[31] ZHANG L, YAN Ch W, QU Q, et al. Effect of atomic oxygen on spacecraft materials and its protection Ⅰ: Atomic oxygen interaction with spacecraft materials[J]. Materials Review, 2002, 16(1): 15-17(in Chinese).
[32] CHU W Y, YANG Sh Q, HE Sh Y. Effect of the atomic oxygen of space environment on properties of kapton/Al film[J]. Journal of Aeronautical Materials, 2006, 26(1): 29-31(in Chinese).
[33] SAMWEL S W. Low earth orbital atomic oxygen erosion effect on spacecraft materials[J]. Space Research Journal, 2014, 7(1): 1-13. doi: 10.3923/srj.2014.1.13
[34] DUAN W B, LI D Q, LIU B J, et al. Effect of spatial atomic oxygen on polarization contrast of polarization-maintaining mirror[J]. Acta Optica Sinica, 2018, 38(11): 1131001(in Chinese). doi: 10.3788/AOS201838.1131001
[35] RANCh H, JIN Y D, ZHU W, et al. Study status on the impact of stress on structure and properties of films[J]. Materials Review, 2013, 27(3): 139-142(in Chinese).
[36] WU G F, SONG X P, YANG Ch H, et al. Effect of annealing temperature on the stress properties of sputtering Ag films on Si wafers[J]. Journal of Functional Materials, 2003, 34(6): 682-684(in Chinese).
[37] SUHIR E. Predicted thermal stresses in a biomaterial kassembly adhesively bonded at the ends[J]. Journal of Applied Physics, 2001, 89(1): 1331655.
[38] LEPLAN H, GEENEN B, ROBIC J Y. Residual stresses in silicon dioxide thin films prepared by reactive electron beam evaporation[J]. Proceedings of SPIE, 1994, 2253: 1263. doi: 10.1117/12.192068
[39] HSUEH C H. Analyses of edge effects on residual stresses in film strip/substrate systems[J]. Journal of Applied Physics, 2000, 88(5): 3022-3035. doi: 10.1063/1.1288161
[40] WANG X M, WANG J J, ZHOU J. Calculation of thermal stress in microstructure fabricated by multilayer thin films[J]. Microfabrication Technology, 2007, 4(2): 20-23(in Chinese).
[41] CHEN T, LUO Ch T, WANG D Sh, et al. Stress distributions of titanium oxide film grown by electron-beam evaporation[J]. Chinese Journal of Vacuum Science and Technology, 2007, 4(2): 168-171(in Chinese).
[42] ZHANG X C, XU B S, WANG H D, et al. Modeling of thermal residual stresses in multilayer coatings with graded properties and compositions[J]. Thin Solid Films, 2005, 497(1/2): 223-231.